| 456 | 1 """ | 
|  | 2 Flux sampling and analysis utilities for COBRA models. | 
|  | 3 | 
|  | 4 This script supports two modes: | 
|  | 5 - Mode 1 (model_and_bounds=True): load a base model and apply bounds from | 
|  | 6     separate files before sampling. | 
|  | 7 - Mode 2 (model_and_bounds=False): load complete models and sample directly. | 
|  | 8 | 
|  | 9 Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples | 
|  | 10 and optional analyses (pFBA, FVA, sensitivity), saved as tabular files. | 
|  | 11 """ | 
|  | 12 | 
| 410 | 13 import argparse | 
|  | 14 import utils.general_utils as utils | 
| 456 | 15 from typing import List | 
| 410 | 16 import os | 
|  | 17 import pandas as pd | 
|  | 18 import cobra | 
|  | 19 import utils.CBS_backend as CBS_backend | 
|  | 20 from joblib import Parallel, delayed, cpu_count | 
|  | 21 from cobra.sampling import OptGPSampler | 
|  | 22 import sys | 
| 419 | 23 import utils.model_utils as model_utils | 
| 410 | 24 | 
|  | 25 | 
|  | 26 ################################# process args ############################### | 
|  | 27 def process_args(args :List[str] = None) -> argparse.Namespace: | 
|  | 28     """ | 
|  | 29     Processes command-line arguments. | 
|  | 30 | 
|  | 31     Args: | 
|  | 32         args (list): List of command-line arguments. | 
|  | 33 | 
|  | 34     Returns: | 
|  | 35         Namespace: An object containing parsed arguments. | 
|  | 36     """ | 
|  | 37     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 38                                      description = 'process some value\'s') | 
|  | 39 | 
|  | 40     parser.add_argument("-mo", "--model_upload", type = str, | 
|  | 41         help = "path to input file with custom rules, if provided") | 
|  | 42 | 
| 419 | 43     parser.add_argument("-mab", "--model_and_bounds", type = str, | 
|  | 44         choices = ['True', 'False'], | 
|  | 45         required = True, | 
|  | 46         help = "upload mode: True for model+bounds, False for complete models") | 
|  | 47 | 
|  | 48 | 
| 410 | 49     parser.add_argument('-ol', '--out_log', | 
|  | 50                         help = "Output log") | 
|  | 51 | 
|  | 52     parser.add_argument('-td', '--tool_dir', | 
|  | 53                         type = str, | 
|  | 54                         required = True, | 
|  | 55                         help = 'your tool directory') | 
|  | 56 | 
|  | 57     parser.add_argument('-in', '--input', | 
| 419 | 58                     required = True, | 
|  | 59                     type=str, | 
|  | 60                     help = 'input bounds files or complete model files') | 
| 410 | 61 | 
| 419 | 62     parser.add_argument('-ni', '--name', | 
| 410 | 63                         required = True, | 
|  | 64                         type=str, | 
|  | 65                         help = 'cell names') | 
|  | 66 | 
|  | 67     parser.add_argument('-a', '--algorithm', | 
|  | 68                         type = str, | 
|  | 69                         choices = ['OPTGP', 'CBS'], | 
|  | 70                         required = True, | 
|  | 71                         help = 'choose sampling algorithm') | 
|  | 72 | 
|  | 73     parser.add_argument('-th', '--thinning', | 
|  | 74                         type = int, | 
|  | 75                         default= 100, | 
|  | 76                         required=False, | 
|  | 77                         help = 'choose thinning') | 
|  | 78 | 
|  | 79     parser.add_argument('-ns', '--n_samples', | 
|  | 80                         type = int, | 
|  | 81                         required = True, | 
|  | 82                         help = 'choose how many samples') | 
|  | 83 | 
|  | 84     parser.add_argument('-sd', '--seed', | 
|  | 85                         type = int, | 
|  | 86                         required = True, | 
|  | 87                         help = 'seed') | 
|  | 88 | 
|  | 89     parser.add_argument('-nb', '--n_batches', | 
|  | 90                         type = int, | 
|  | 91                         required = True, | 
|  | 92                         help = 'choose how many batches') | 
|  | 93 | 
| 430 | 94     parser.add_argument('-opt', '--perc_opt', | 
|  | 95                         type = float, | 
|  | 96                         default=0.9, | 
|  | 97                         required = False, | 
|  | 98                         help = 'choose the fraction of optimality for FVA (0-1)') | 
|  | 99 | 
| 410 | 100     parser.add_argument('-ot', '--output_type', | 
|  | 101                         type = str, | 
|  | 102                         required = True, | 
|  | 103                         help = 'output type') | 
|  | 104 | 
|  | 105     parser.add_argument('-ota', '--output_type_analysis', | 
|  | 106                         type = str, | 
|  | 107                         required = False, | 
|  | 108                         help = 'output type analysis') | 
|  | 109 | 
|  | 110     parser.add_argument('-idop', '--output_path', | 
|  | 111                         type = str, | 
|  | 112                         default='flux_simulation', | 
|  | 113                         help = 'output path for maps') | 
|  | 114 | 
|  | 115     ARGS = parser.parse_args(args) | 
|  | 116     return ARGS | 
|  | 117 | 
|  | 118 ########################### warning ########################################### | 
|  | 119 def warning(s :str) -> None: | 
|  | 120     """ | 
|  | 121     Log a warning message to an output log file and print it to the console. | 
|  | 122 | 
|  | 123     Args: | 
|  | 124         s (str): The warning message to be logged and printed. | 
|  | 125 | 
|  | 126     Returns: | 
|  | 127       None | 
|  | 128     """ | 
|  | 129     with open(ARGS.out_log, 'a') as log: | 
|  | 130         log.write(s + "\n\n") | 
|  | 131     print(s) | 
|  | 132 | 
|  | 133 | 
|  | 134 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None: | 
| 456 | 135     """ | 
|  | 136     Write a DataFrame to a TSV file under ARGS.output_path with a given base name. | 
|  | 137 | 
|  | 138     Args: | 
|  | 139         dataset: The DataFrame to write. | 
|  | 140         name: Base file name (without extension). | 
|  | 141         keep_index: Whether to keep the DataFrame index in the file. | 
|  | 142 | 
|  | 143     Returns: | 
|  | 144         None | 
|  | 145     """ | 
| 410 | 146     dataset.index.name = 'Reactions' | 
|  | 147     dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index) | 
|  | 148 | 
|  | 149 ############################ dataset input #################################### | 
|  | 150 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 151     """ | 
|  | 152     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 153 | 
|  | 154     Args: | 
|  | 155         data (str): Path to the CSV file containing the dataset. | 
|  | 156         name (str): Name of the dataset, used in error messages. | 
|  | 157 | 
|  | 158     Returns: | 
|  | 159         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 160 | 
|  | 161     Raises: | 
|  | 162         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 163         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 164     """ | 
|  | 165     try: | 
|  | 166         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | 
|  | 167     except pd.errors.EmptyDataError: | 
|  | 168         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 169     if len(dataset.columns) < 2: | 
|  | 170         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 171     return dataset | 
|  | 172 | 
|  | 173 | 
|  | 174 | 
|  | 175 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None: | 
|  | 176     """ | 
|  | 177     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | 
|  | 178 | 
|  | 179     Args: | 
|  | 180         model (cobra.Model): The COBRA model to sample from. | 
|  | 181         model_name (str): The name of the model, used in naming output files. | 
|  | 182         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 183         thinning (int, optional): Thinning parameter for the sampler. Default is 100. | 
|  | 184         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 185         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 186 | 
|  | 187     Returns: | 
|  | 188         None | 
|  | 189     """ | 
|  | 190 | 
|  | 191     for i in range(0, n_batches): | 
|  | 192         optgp = OptGPSampler(model, thinning, seed) | 
|  | 193         samples = optgp.sample(n_samples) | 
|  | 194         samples.to_csv(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_OPTGP.csv', index=False) | 
|  | 195         seed+=1 | 
|  | 196     samplesTotal = pd.DataFrame() | 
|  | 197     for i in range(0, n_batches): | 
|  | 198         samples_batch = pd.read_csv(ARGS.output_path + "/"  +  model_name + '_'+ str(i)+'_OPTGP.csv') | 
|  | 199         samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | 
|  | 200 | 
|  | 201     write_to_file(samplesTotal.T, model_name, True) | 
|  | 202 | 
|  | 203     for i in range(0, n_batches): | 
|  | 204         os.remove(ARGS.output_path + "/" +   model_name + '_'+ str(i)+'_OPTGP.csv') | 
|  | 205 | 
|  | 206 | 
|  | 207 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None: | 
|  | 208     """ | 
|  | 209     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | 
|  | 210 | 
|  | 211     Args: | 
|  | 212         model (cobra.Model): The COBRA model to sample from. | 
|  | 213         model_name (str): The name of the model, used in naming output files. | 
|  | 214         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 215         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 216         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 217 | 
|  | 218     Returns: | 
|  | 219         None | 
|  | 220     """ | 
|  | 221 | 
|  | 222     df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6) | 
|  | 223 | 
|  | 224     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed) | 
|  | 225 | 
|  | 226     for i in range(0, n_batches): | 
|  | 227         samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples)) | 
|  | 228         try: | 
|  | 229             CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) | 
|  | 230         except Exception as e: | 
|  | 231             utils.logWarning( | 
|  | 232             "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e), | 
|  | 233             ARGS.out_log) | 
|  | 234             CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], | 
|  | 235                                                     samples) | 
|  | 236         utils.logWarning(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log) | 
|  | 237         samples.to_csv(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_CBS.csv', index=False) | 
|  | 238 | 
|  | 239     samplesTotal = pd.DataFrame() | 
|  | 240     for i in range(0, n_batches): | 
|  | 241         samples_batch = pd.read_csv(ARGS.output_path + "/"  +  model_name + '_'+ str(i)+'_CBS.csv') | 
|  | 242         samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | 
|  | 243 | 
|  | 244     write_to_file(samplesTotal.T, model_name, True) | 
|  | 245 | 
|  | 246     for i in range(0, n_batches): | 
|  | 247         os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv') | 
|  | 248 | 
|  | 249 | 
| 419 | 250 | 
|  | 251 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]: | 
| 410 | 252     """ | 
| 419 | 253     MODE 1: Prepares the model with bounds from separate bounds file and performs sampling. | 
| 410 | 254 | 
|  | 255     Args: | 
|  | 256         model_input_original (cobra.Model): The original COBRA model. | 
|  | 257         bounds_path (str): Path to the CSV file containing the bounds dataset. | 
|  | 258         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 259 | 
|  | 260     Returns: | 
|  | 261         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 262     """ | 
|  | 263 | 
|  | 264     model_input = model_input_original.copy() | 
|  | 265     bounds_df = read_dataset(bounds_path, "bounds dataset") | 
| 419 | 266 | 
|  | 267     # Apply bounds to model | 
| 410 | 268     for rxn_index, row in bounds_df.iterrows(): | 
| 419 | 269         try: | 
|  | 270             model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 
|  | 271             model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 
|  | 272         except KeyError: | 
|  | 273             warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.") | 
| 410 | 274 | 
| 419 | 275     return perform_sampling_and_analysis(model_input, cell_name) | 
|  | 276 | 
|  | 277 | 
|  | 278 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]: | 
|  | 279     """ | 
|  | 280     Common function to perform sampling and analysis on a prepared model. | 
|  | 281 | 
|  | 282     Args: | 
|  | 283         model_input (cobra.Model): The prepared COBRA model with bounds applied. | 
|  | 284         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 285 | 
|  | 286     Returns: | 
|  | 287         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 288     """ | 
| 410 | 289 | 
|  | 290     if ARGS.algorithm == 'OPTGP': | 
|  | 291         OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 
|  | 292     elif ARGS.algorithm == 'CBS': | 
| 419 | 293         CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 
| 410 | 294 | 
|  | 295     df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) | 
|  | 296 | 
|  | 297     if("fluxes" not in ARGS.output_types): | 
| 419 | 298         os.remove(ARGS.output_path + "/" + cell_name + '.csv') | 
| 410 | 299 | 
| 419 | 300     returnList = [df_mean, df_median, df_quantiles] | 
| 410 | 301 | 
|  | 302     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) | 
|  | 303 | 
|  | 304     if("pFBA" in ARGS.output_type_analysis): | 
|  | 305         returnList.append(df_pFBA) | 
|  | 306     if("FVA" in ARGS.output_type_analysis): | 
|  | 307         returnList.append(df_FVA) | 
|  | 308     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 309         returnList.append(df_sensitivity) | 
|  | 310 | 
|  | 311     return returnList | 
|  | 312 | 
|  | 313 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]: | 
|  | 314     """ | 
|  | 315     Computes statistics (mean, median, quantiles) for the fluxes. | 
|  | 316 | 
|  | 317     Args: | 
|  | 318         model_name (str): Name of the model, used in filename for input. | 
|  | 319         output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | 
|  | 320 | 
|  | 321     Returns: | 
|  | 322         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | 
|  | 323     """ | 
|  | 324 | 
|  | 325     df_mean = pd.DataFrame() | 
|  | 326     df_median= pd.DataFrame() | 
|  | 327     df_quantiles= pd.DataFrame() | 
|  | 328 | 
|  | 329     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T | 
|  | 330     df_samples = df_samples.round(8) | 
|  | 331 | 
|  | 332     for output_type in output_types: | 
|  | 333         if(output_type == "mean"): | 
|  | 334             df_mean = df_samples.mean() | 
|  | 335             df_mean = df_mean.to_frame().T | 
|  | 336             df_mean = df_mean.reset_index(drop=True) | 
|  | 337             df_mean.index = [model_name] | 
|  | 338         elif(output_type == "median"): | 
|  | 339             df_median = df_samples.median() | 
|  | 340             df_median = df_median.to_frame().T | 
|  | 341             df_median = df_median.reset_index(drop=True) | 
|  | 342             df_median.index = [model_name] | 
|  | 343         elif(output_type == "quantiles"): | 
|  | 344             newRow = [] | 
|  | 345             cols = [] | 
|  | 346             for rxn in df_samples.columns: | 
|  | 347                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | 
|  | 348                 newRow.append(quantiles[0.25]) | 
|  | 349                 cols.append(rxn + "_q1") | 
|  | 350                 newRow.append(quantiles[0.5]) | 
|  | 351                 cols.append(rxn + "_q2") | 
|  | 352                 newRow.append(quantiles[0.75]) | 
|  | 353                 cols.append(rxn + "_q3") | 
|  | 354             df_quantiles = pd.DataFrame(columns=cols) | 
|  | 355             df_quantiles.loc[0] = newRow | 
|  | 356             df_quantiles = df_quantiles.reset_index(drop=True) | 
|  | 357             df_quantiles.index = [model_name] | 
|  | 358 | 
|  | 359     return df_mean, df_median, df_quantiles | 
|  | 360 | 
|  | 361 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]: | 
|  | 362     """ | 
|  | 363     Performs flux analysis including pFBA, FVA, and sensitivity analysis. | 
|  | 364 | 
|  | 365     Args: | 
|  | 366         model (cobra.Model): The COBRA model to analyze. | 
|  | 367         model_name (str): Name of the model, used in filenames for output. | 
|  | 368         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | 
|  | 369 | 
|  | 370     Returns: | 
|  | 371         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | 
|  | 372     """ | 
|  | 373 | 
|  | 374     df_pFBA = pd.DataFrame() | 
|  | 375     df_FVA= pd.DataFrame() | 
|  | 376     df_sensitivity= pd.DataFrame() | 
|  | 377 | 
|  | 378     for output_type in output_types: | 
|  | 379         if(output_type == "pFBA"): | 
|  | 380             model.objective = "Biomass" | 
|  | 381             solution = cobra.flux_analysis.pfba(model) | 
|  | 382             fluxes = solution.fluxes | 
| 419 | 383             df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist() | 
| 410 | 384             df_pFBA = df_pFBA.reset_index(drop=True) | 
|  | 385             df_pFBA.index = [model_name] | 
|  | 386             df_pFBA = df_pFBA.astype(float).round(6) | 
|  | 387         elif(output_type == "FVA"): | 
| 430 | 388             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8) | 
| 410 | 389             columns = [] | 
|  | 390             for rxn in fva.index.to_list(): | 
|  | 391                 columns.append(rxn + "_min") | 
|  | 392                 columns.append(rxn + "_max") | 
|  | 393             df_FVA= pd.DataFrame(columns = columns) | 
|  | 394             for index_rxn, row in fva.iterrows(): | 
|  | 395                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | 
|  | 396                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | 
|  | 397             df_FVA = df_FVA.reset_index(drop=True) | 
|  | 398             df_FVA.index = [model_name] | 
|  | 399             df_FVA = df_FVA.astype(float).round(6) | 
|  | 400         elif(output_type == "sensitivity"): | 
|  | 401             model.objective = "Biomass" | 
|  | 402             solution_original = model.optimize().objective_value | 
|  | 403             reactions = model.reactions | 
|  | 404             single = cobra.flux_analysis.single_reaction_deletion(model) | 
|  | 405             newRow = [] | 
|  | 406             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | 
|  | 407             for rxn in reactions: | 
|  | 408                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | 
|  | 409             df_sensitivity.loc[model_name] = newRow | 
|  | 410             df_sensitivity = df_sensitivity.astype(float).round(6) | 
|  | 411     return df_pFBA, df_FVA, df_sensitivity | 
|  | 412 | 
|  | 413 ############################# main ########################################### | 
|  | 414 def main(args :List[str] = None) -> None: | 
|  | 415     """ | 
| 456 | 416     Initialize and run sampling/analysis based on the frontend input arguments. | 
| 410 | 417 | 
|  | 418     Returns: | 
|  | 419         None | 
|  | 420     """ | 
|  | 421 | 
| 419 | 422     num_processors = max(1, cpu_count() - 1) | 
| 410 | 423 | 
|  | 424     global ARGS | 
|  | 425     ARGS = process_args(args) | 
|  | 426 | 
|  | 427     if not os.path.exists(ARGS.output_path): | 
|  | 428         os.makedirs(ARGS.output_path) | 
| 419 | 429 | 
|  | 430     # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) --- | 
| 421 | 431     ARGS.input_files = ARGS.input.split(",") if ARGS.input else [] | 
| 419 | 432     ARGS.file_names = ARGS.name.split(",") | 
|  | 433     # output types (required) -> list | 
| 421 | 434     ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] | 
| 419 | 435     # optional analysis output types -> list or empty | 
| 421 | 436     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] | 
| 419 | 437 | 
| 421 | 438     print("=== INPUT FILES ===") | 
| 422 | 439     print(f"{ARGS.input_files}") | 
|  | 440     print(f"{ARGS.file_names}") | 
|  | 441     print(f"{ARGS.output_type}") | 
|  | 442     print(f"{ARGS.output_types}") | 
|  | 443     print(f"{ARGS.output_type_analysis}") | 
| 410 | 444 | 
| 419 | 445     if ARGS.model_and_bounds == "True": | 
|  | 446         # MODE 1: Model + bounds (separate files) | 
|  | 447         print("=== MODE 1: Model + Bounds (separate files) ===") | 
|  | 448 | 
|  | 449         # Load base model | 
|  | 450         if not ARGS.model_upload: | 
|  | 451             sys.exit("Error: model_upload is required for Mode 1") | 
| 410 | 452 | 
| 419 | 453         base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload) | 
| 410 | 454 | 
| 419 | 455         validation = model_utils.validate_model(base_model) | 
|  | 456 | 
| 456 | 457         print("\n=== MODEL VALIDATION ===") | 
| 419 | 458         for key, value in validation.items(): | 
|  | 459             print(f"{key}: {value}") | 
|  | 460 | 
| 456 | 461         # Set solver verbosity to 1 to see warning and error messages only. | 
| 419 | 462         base_model.solver.configuration.verbosity = 1 | 
| 410 | 463 | 
| 456 | 464         # Process each bounds file with the base model | 
| 419 | 465         results = Parallel(n_jobs=num_processors)( | 
|  | 466             delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) | 
|  | 467             for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 468         ) | 
| 410 | 469 | 
| 419 | 470     else: | 
|  | 471         # MODE 2: Multiple complete models | 
|  | 472         print("=== MODE 2: Multiple complete models ===") | 
|  | 473 | 
|  | 474         # Process each complete model file | 
|  | 475         results = Parallel(n_jobs=num_processors)( | 
|  | 476             delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) | 
|  | 477             for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 478         ) | 
| 410 | 479 | 
|  | 480 | 
|  | 481     all_mean = pd.concat([result[0] for result in results], ignore_index=False) | 
|  | 482     all_median = pd.concat([result[1] for result in results], ignore_index=False) | 
|  | 483     all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | 
|  | 484 | 
|  | 485     if("mean" in ARGS.output_types): | 
|  | 486         all_mean = all_mean.fillna(0.0) | 
|  | 487         all_mean = all_mean.sort_index() | 
|  | 488         write_to_file(all_mean.T, "mean", True) | 
|  | 489 | 
|  | 490     if("median" in ARGS.output_types): | 
|  | 491         all_median = all_median.fillna(0.0) | 
|  | 492         all_median = all_median.sort_index() | 
|  | 493         write_to_file(all_median.T, "median", True) | 
|  | 494 | 
|  | 495     if("quantiles" in ARGS.output_types): | 
|  | 496         all_quantiles = all_quantiles.fillna(0.0) | 
|  | 497         all_quantiles = all_quantiles.sort_index() | 
|  | 498         write_to_file(all_quantiles.T, "quantiles", True) | 
|  | 499 | 
|  | 500     index_result = 3 | 
|  | 501     if("pFBA" in ARGS.output_type_analysis): | 
|  | 502         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 503         all_pFBA = all_pFBA.sort_index() | 
|  | 504         write_to_file(all_pFBA.T, "pFBA", True) | 
|  | 505         index_result+=1 | 
|  | 506     if("FVA" in ARGS.output_type_analysis): | 
|  | 507         all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 508         all_FVA = all_FVA.sort_index() | 
|  | 509         write_to_file(all_FVA.T, "FVA", True) | 
|  | 510         index_result+=1 | 
|  | 511     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 512         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 513         all_sensitivity = all_sensitivity.sort_index() | 
|  | 514         write_to_file(all_sensitivity.T, "sensitivity", True) | 
|  | 515 | 
| 456 | 516     return | 
| 410 | 517 | 
|  | 518 ############################################################################## | 
|  | 519 if __name__ == "__main__": | 
|  | 520     main() |