489
|
1 """
|
|
2 Generate Reaction Activity Scores (RAS) from a gene expression dataset and GPR rules.
|
|
3
|
|
4 The script reads a tabular dataset (genes x samples) and a rules file (GPRs),
|
|
5 computes RAS per reaction for each sample/cell line, and writes a tabular output.
|
|
6 """
|
93
|
7 from __future__ import division
|
|
8 import sys
|
|
9 import argparse
|
|
10 import collections
|
|
11 import pandas as pd
|
|
12 import pickle as pk
|
|
13 import utils.general_utils as utils
|
|
14 import utils.rule_parsing as ruleUtils
|
|
15 from typing import Union, Optional, List, Dict, Tuple, TypeVar
|
|
16
|
|
17 ERRORS = []
|
|
18 ########################## argparse ##########################################
|
|
19 ARGS :argparse.Namespace
|
147
|
20 def process_args(args:List[str] = None) -> argparse.Namespace:
|
93
|
21 """
|
|
22 Processes command-line arguments.
|
|
23
|
|
24 Args:
|
|
25 args (list): List of command-line arguments.
|
|
26
|
|
27 Returns:
|
|
28 Namespace: An object containing parsed arguments.
|
|
29 """
|
|
30 parser = argparse.ArgumentParser(
|
|
31 usage = '%(prog)s [options]',
|
|
32 description = "process some value's genes to create a comparison's map.")
|
|
33
|
489
|
34 parser.add_argument("-rl", "--model_upload", type = str,
|
|
35 help = "path to input file containing the rules")
|
93
|
36
|
489
|
37 parser.add_argument("-rn", "--model_upload_name", type = str, help = "custom rules name")
|
|
38 # Galaxy converts files into .dat, this helps infer the original extension when needed.
|
93
|
39
|
|
40 parser.add_argument(
|
|
41 '-n', '--none',
|
|
42 type = utils.Bool("none"), default = True,
|
|
43 help = 'compute Nan values')
|
|
44
|
|
45 parser.add_argument(
|
|
46 '-td', '--tool_dir',
|
|
47 type = str,
|
|
48 required = True, help = 'your tool directory')
|
|
49
|
|
50 parser.add_argument(
|
|
51 '-ol', '--out_log',
|
|
52 type = str,
|
|
53 help = "Output log")
|
|
54
|
|
55 parser.add_argument(
|
489
|
56 '-in', '--input',
|
93
|
57 type = str,
|
|
58 help = 'input dataset')
|
|
59
|
|
60 parser.add_argument(
|
|
61 '-ra', '--ras_output',
|
|
62 type = str,
|
|
63 required = True, help = 'ras output')
|
147
|
64
|
93
|
65
|
147
|
66 return parser.parse_args(args)
|
93
|
67
|
|
68 ############################ dataset input ####################################
|
|
69 def read_dataset(data :str, name :str) -> pd.DataFrame:
|
|
70 """
|
|
71 Read a dataset from a CSV file and return it as a pandas DataFrame.
|
|
72
|
|
73 Args:
|
|
74 data (str): Path to the CSV file containing the dataset.
|
|
75 name (str): Name of the dataset, used in error messages.
|
|
76
|
|
77 Returns:
|
|
78 pandas.DataFrame: DataFrame containing the dataset.
|
|
79
|
|
80 Raises:
|
|
81 pd.errors.EmptyDataError: If the CSV file is empty.
|
|
82 sys.exit: If the CSV file has the wrong format, the execution is aborted.
|
|
83 """
|
|
84 try:
|
|
85 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
|
|
86 except pd.errors.EmptyDataError:
|
|
87 sys.exit('Execution aborted: wrong format of ' + name + '\n')
|
|
88 if len(dataset.columns) < 2:
|
|
89 sys.exit('Execution aborted: wrong format of ' + name + '\n')
|
|
90 return dataset
|
|
91
|
|
92 ############################ load id e rules ##################################
|
|
93 def load_id_rules(reactions :Dict[str, Dict[str, List[str]]]) -> Tuple[List[str], List[Dict[str, List[str]]]]:
|
|
94 """
|
|
95 Load IDs and rules from a dictionary of reactions.
|
|
96
|
|
97 Args:
|
|
98 reactions (dict): A dictionary where keys are IDs and values are rules.
|
|
99
|
|
100 Returns:
|
|
101 tuple: A tuple containing two lists, the first list containing IDs and the second list containing rules.
|
|
102 """
|
|
103 ids, rules = [], []
|
|
104 for key, value in reactions.items():
|
|
105 ids.append(key)
|
|
106 rules.append(value)
|
|
107 return (ids, rules)
|
|
108
|
|
109
|
|
110 ############################ gene #############################################
|
|
111 def data_gene(gene: pd.DataFrame, type_gene: str, name: str, gene_custom: Optional[Dict[str, str]]) -> Dict[str, str]:
|
|
112 """
|
|
113 Process gene data to ensure correct formatting and handle duplicates.
|
|
114
|
|
115 Args:
|
|
116 gene (DataFrame): DataFrame containing gene data.
|
|
117 type_gene (str): Type of gene data (e.g., 'hugo_id', 'ensembl_gene_id', 'symbol', 'entrez_id').
|
|
118 name (str): Name of the dataset.
|
|
119 gene_custom (dict or None): Custom gene data dictionary if provided.
|
|
120
|
|
121 Returns:
|
|
122 dict: A dictionary containing gene data with gene IDs as keys and corresponding values.
|
|
123 """
|
309
|
124
|
93
|
125 for i in range(len(gene)):
|
|
126 tmp = gene.iloc[i, 0]
|
|
127 gene.iloc[i, 0] = tmp.strip().split('.')[0]
|
|
128
|
|
129 gene_dup = [item for item, count in
|
|
130 collections.Counter(gene[gene.columns[0]]).items() if count > 1]
|
|
131 pat_dup = [item for item, count in
|
|
132 collections.Counter(list(gene.columns)).items() if count > 1]
|
260
|
133
|
|
134 gene_in_rule = None
|
259
|
135
|
93
|
136 if gene_dup:
|
|
137 if gene_custom == None:
|
264
|
138
|
309
|
139 if str(ARGS.rules_selector) == 'HMRcore':
|
|
140 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/HMRcore_genes.p', 'rb'))
|
93
|
141
|
309
|
142 elif str(ARGS.rules_selector) == 'Recon':
|
|
143 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/Recon_genes.p', 'rb'))
|
93
|
144
|
309
|
145 elif str(ARGS.rules_selector) == 'ENGRO2':
|
|
146 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/ENGRO2_genes.p', 'rb'))
|
263
|
147
|
309
|
148 utils.logWarning(f"{ARGS.tool_dir}'/local/pickle files/ENGRO2_genes.p'", ARGS.out_log)
|
259
|
149
|
93
|
150 gene_in_rule = gene_in_rule.get(type_gene)
|
|
151
|
|
152 else:
|
|
153 gene_in_rule = gene_custom
|
260
|
154
|
93
|
155 tmp = []
|
|
156 for i in gene_dup:
|
|
157 if gene_in_rule.get(i) == 'ok':
|
|
158 tmp.append(i)
|
|
159 if tmp:
|
|
160 sys.exit('Execution aborted because gene ID '
|
|
161 +str(tmp)+' in '+name+' is duplicated\n')
|
|
162
|
|
163 if pat_dup: utils.logWarning(f"Warning: duplicated label\n{pat_dup} in {name}", ARGS.out_log)
|
|
164 return (gene.set_index(gene.columns[0])).to_dict()
|
|
165
|
|
166 ############################ resolve ##########################################
|
|
167 def replace_gene_value(l :str, d :str) -> Tuple[Union[int, float], list]:
|
|
168 """
|
489
|
169 Replace gene identifiers in a parsed rule expression with values from a dict.
|
93
|
170
|
|
171 Args:
|
489
|
172 l: Parsed rule as a nested list structure (strings, lists, and operators).
|
|
173 d: Dict mapping gene IDs to numeric values.
|
93
|
174
|
|
175 Returns:
|
489
|
176 tuple: (new_expression, not_found_genes)
|
93
|
177 """
|
|
178 tmp = []
|
|
179 err = []
|
|
180 while l:
|
|
181 if isinstance(l[0], list):
|
|
182 tmp_rules, tmp_err = replace_gene_value(l[0], d)
|
|
183 tmp.append(tmp_rules)
|
|
184 err.extend(tmp_err)
|
|
185 else:
|
|
186 value = replace_gene(l[0], d)
|
|
187 tmp.append(value)
|
|
188 if value == None:
|
|
189 err.append(l[0])
|
|
190 l = l[1:]
|
|
191 return (tmp, err)
|
|
192
|
489
|
193 def replace_gene(l: str, d: Dict[str, Union[int, float]]) -> Union[int, float, None]:
|
93
|
194 """
|
|
195 Replace a single gene identifier with its corresponding value from a dictionary.
|
|
196
|
|
197 Args:
|
|
198 l (str): Gene identifier to replace.
|
489
|
199 d (dict): Dict mapping gene IDs to numeric values.
|
93
|
200
|
|
201 Returns:
|
489
|
202 float/int/None: Corresponding value from the dictionary if found, None otherwise.
|
93
|
203
|
|
204 Raises:
|
|
205 sys.exit: If the value associated with the gene identifier is not valid.
|
|
206 """
|
|
207 if l =='and' or l == 'or':
|
|
208 return l
|
|
209 else:
|
|
210 value = d.get(l, None)
|
|
211 if not(value == None or isinstance(value, (int, float))):
|
|
212 sys.exit('Execution aborted: ' + value + ' value not valid\n')
|
|
213 return value
|
|
214
|
|
215 T = TypeVar("T", bound = Optional[Union[int, float]])
|
|
216 def computes(val1 :T, op :str, val2 :T, cn :bool) -> T:
|
|
217 """
|
|
218 Compute the RAS value between two value and an operator ('and' or 'or').
|
|
219
|
|
220 Args:
|
|
221 val1(Optional(Union[float, int])): First value.
|
|
222 op (str): Operator ('and' or 'or').
|
|
223 val2(Optional(Union[float, int])): Second value.
|
|
224 cn (bool): Control boolean value.
|
|
225
|
|
226 Returns:
|
|
227 Optional(Union[float, int]): Result of the computation.
|
|
228 """
|
|
229 if val1 != None and val2 != None:
|
|
230 if op == 'and':
|
|
231 return min(val1, val2)
|
|
232 else:
|
|
233 return val1 + val2
|
|
234 elif op == 'and':
|
|
235 if cn is True:
|
|
236 if val1 != None:
|
|
237 return val1
|
|
238 elif val2 != None:
|
|
239 return val2
|
|
240 else:
|
|
241 return None
|
|
242 else:
|
|
243 return None
|
|
244 else:
|
|
245 if val1 != None:
|
|
246 return val1
|
|
247 elif val2 != None:
|
|
248 return val2
|
|
249 else:
|
|
250 return None
|
|
251
|
|
252 # ris should be Literal[None] but Literal is not supported in Python 3.7
|
|
253 def control(ris, l :List[Union[int, float, list]], cn :bool) -> Union[bool, int, float]: #Union[Literal[False], int, float]:
|
|
254 """
|
|
255 Control the format of the expression.
|
|
256
|
|
257 Args:
|
|
258 ris: Intermediate result.
|
|
259 l (list): Expression to control.
|
|
260 cn (bool): Control boolean value.
|
|
261
|
|
262 Returns:
|
|
263 Union[Literal[False], int, float]: Result of the control.
|
|
264 """
|
|
265 if len(l) == 1:
|
|
266 if isinstance(l[0], (float, int)) or l[0] == None:
|
|
267 return l[0]
|
|
268 elif isinstance(l[0], list):
|
|
269 return control(None, l[0], cn)
|
|
270 else:
|
|
271 return False
|
|
272 elif len(l) > 2:
|
|
273 return control_list(ris, l, cn)
|
|
274 else:
|
|
275 return False
|
|
276
|
|
277 def control_list(ris, l :List[Optional[Union[float, int, list]]], cn :bool) -> Optional[bool]: #Optional[Literal[False]]:
|
|
278 """
|
|
279 Control the format of a list of expressions.
|
|
280
|
|
281 Args:
|
|
282 ris: Intermediate result.
|
|
283 l (list): List of expressions to control.
|
|
284 cn (bool): Control boolean value.
|
|
285
|
|
286 Returns:
|
|
287 Optional[Literal[False]]: Result of the control.
|
|
288 """
|
|
289 while l:
|
|
290 if len(l) == 1:
|
|
291 return False
|
|
292 elif (isinstance(l[0], (float, int)) or
|
|
293 l[0] == None) and l[1] in ['and', 'or']:
|
|
294 if isinstance(l[2], (float, int)) or l[2] == None:
|
|
295 ris = computes(l[0], l[1], l[2], cn)
|
|
296 elif isinstance(l[2], list):
|
|
297 tmp = control(None, l[2], cn)
|
|
298 if tmp is False:
|
|
299 return False
|
|
300 else:
|
|
301 ris = computes(l[0], l[1], tmp, cn)
|
|
302 else:
|
|
303 return False
|
|
304 l = l[3:]
|
|
305 elif l[0] in ['and', 'or']:
|
|
306 if isinstance(l[1], (float, int)) or l[1] == None:
|
|
307 ris = computes(ris, l[0], l[1], cn)
|
|
308 elif isinstance(l[1], list):
|
|
309 tmp = control(None,l[1], cn)
|
|
310 if tmp is False:
|
|
311 return False
|
|
312 else:
|
|
313 ris = computes(ris, l[0], tmp, cn)
|
|
314 else:
|
|
315 return False
|
|
316 l = l[2:]
|
|
317 elif isinstance(l[0], list) and l[1] in ['and', 'or']:
|
|
318 if isinstance(l[2], (float, int)) or l[2] == None:
|
|
319 tmp = control(None, l[0], cn)
|
|
320 if tmp is False:
|
|
321 return False
|
|
322 else:
|
|
323 ris = computes(tmp, l[1], l[2], cn)
|
|
324 elif isinstance(l[2], list):
|
|
325 tmp = control(None, l[0], cn)
|
|
326 tmp2 = control(None, l[2], cn)
|
|
327 if tmp is False or tmp2 is False:
|
|
328 return False
|
|
329 else:
|
|
330 ris = computes(tmp, l[1], tmp2, cn)
|
|
331 else:
|
|
332 return False
|
|
333 l = l[3:]
|
|
334 else:
|
|
335 return False
|
|
336 return ris
|
|
337
|
|
338 ResolvedRules = Dict[str, List[Optional[Union[float, int]]]]
|
|
339 def resolve(genes: Dict[str, str], rules: List[str], ids: List[str], resolve_none: bool, name: str) -> Tuple[Optional[ResolvedRules], Optional[list]]:
|
|
340 """
|
|
341 Resolve rules using gene data to compute scores for each rule.
|
|
342
|
|
343 Args:
|
|
344 genes (dict): Dictionary containing gene data with gene IDs as keys and corresponding values.
|
|
345 rules (list): List of rules to resolve.
|
|
346 ids (list): List of IDs corresponding to the rules.
|
|
347 resolve_none (bool): Flag indicating whether to resolve None values in the rules.
|
|
348 name (str): Name of the dataset.
|
|
349
|
|
350 Returns:
|
|
351 tuple: A tuple containing resolved rules as a dictionary and a list of gene IDs not found in the data.
|
|
352 """
|
|
353 resolve_rules = {}
|
|
354 not_found = []
|
|
355 flag = False
|
|
356 for key, value in genes.items():
|
|
357 tmp_resolve = []
|
|
358 for i in range(len(rules)):
|
|
359 tmp = rules[i]
|
|
360 if tmp:
|
|
361 tmp, err = replace_gene_value(tmp, value)
|
|
362 if err:
|
|
363 not_found.extend(err)
|
|
364 ris = control(None, tmp, resolve_none)
|
|
365 if ris is False or ris == None:
|
|
366 tmp_resolve.append(None)
|
|
367 else:
|
|
368 tmp_resolve.append(ris)
|
|
369 flag = True
|
|
370 else:
|
|
371 tmp_resolve.append(None)
|
|
372 resolve_rules[key] = tmp_resolve
|
|
373
|
|
374 if flag is False:
|
|
375 utils.logWarning(
|
|
376 f"Warning: no computable score (due to missing gene values) for class {name}, the class has been disregarded",
|
|
377 ARGS.out_log)
|
|
378
|
|
379 return (None, None)
|
|
380
|
|
381 return (resolve_rules, list(set(not_found)))
|
|
382 ############################ create_ras #######################################
|
|
383 def create_ras(resolve_rules: Optional[ResolvedRules], dataset_name: str, rules: List[str], ids: List[str], file: str) -> None:
|
|
384 """
|
|
385 Create a RAS (Reaction Activity Score) file from resolved rules.
|
|
386
|
|
387 Args:
|
|
388 resolve_rules (dict): Dictionary containing resolved rules.
|
|
389 dataset_name (str): Name of the dataset.
|
|
390 rules (list): List of rules.
|
|
391 file (str): Path to the output RAS file.
|
|
392
|
|
393 Returns:
|
|
394 None
|
|
395 """
|
|
396 if resolve_rules is None:
|
|
397 utils.logWarning(f"Couldn't generate RAS for current dataset: {dataset_name}", ARGS.out_log)
|
|
398
|
|
399 for geni in resolve_rules.values():
|
|
400 for i, valori in enumerate(geni):
|
|
401 if valori == None:
|
|
402 geni[i] = 'None'
|
|
403
|
|
404 output_ras = pd.DataFrame.from_dict(resolve_rules)
|
|
405
|
|
406 output_ras.insert(0, 'Reactions', ids)
|
|
407 output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False)
|
|
408
|
|
409 text_file = open(file, "w")
|
|
410
|
|
411 text_file.write(output_to_csv)
|
|
412 text_file.close()
|
|
413
|
|
414 ################################- NEW RAS COMPUTATION -################################
|
|
415 Expr = Optional[Union[int, float]]
|
|
416 Ras = Expr
|
|
417 def ras_for_cell_lines(dataset: pd.DataFrame, rules: Dict[str, ruleUtils.OpList]) -> Dict[str, Dict[str, Ras]]:
|
|
418 """
|
|
419 Generates the RAS scores for each cell line found in the dataset.
|
|
420
|
|
421 Args:
|
|
422 dataset (pd.DataFrame): Dataset containing gene values.
|
|
423 rules (dict): The dict containing reaction ids as keys and rules as values.
|
489
|
424
|
|
425 Note:
|
|
426 Modifies dataset in place by setting the first column as index.
|
93
|
427
|
|
428 Returns:
|
|
429 dict: A dictionary where each key corresponds to a cell line name and each value is a dictionary
|
|
430 where each key corresponds to a reaction ID and each value is its computed RAS score.
|
|
431 """
|
|
432 ras_values_by_cell_line = {}
|
|
433 dataset.set_index(dataset.columns[0], inplace=True)
|
489
|
434
|
|
435 for cell_line_name in dataset.columns: #[1:]:
|
93
|
436 cell_line = dataset[cell_line_name].to_dict()
|
|
437 ras_values_by_cell_line[cell_line_name]= get_ras_values(rules, cell_line)
|
|
438 return ras_values_by_cell_line
|
|
439
|
|
440 def get_ras_values(value_rules: Dict[str, ruleUtils.OpList], dataset: Dict[str, Expr]) -> Dict[str, Ras]:
|
|
441 """
|
|
442 Computes the RAS (Reaction Activity Score) values for each rule in the given dict.
|
|
443
|
|
444 Args:
|
|
445 value_rules (dict): A dictionary where keys are reaction ids and values are OpLists.
|
|
446 dataset : gene expression data of one cell line.
|
|
447
|
|
448 Returns:
|
|
449 dict: A dictionary where keys are reaction ids and values are the computed RAS values for each rule.
|
|
450 """
|
|
451 return {key: ras_op_list(op_list, dataset) for key, op_list in value_rules.items()}
|
|
452
|
|
453 def get_gene_expr(dataset :Dict[str, Expr], name :str) -> Expr:
|
|
454 """
|
|
455 Extracts the gene expression of the given gene from a cell line dataset.
|
|
456
|
|
457 Args:
|
|
458 dataset : gene expression data of one cell line.
|
|
459 name : gene name.
|
|
460
|
|
461 Returns:
|
|
462 Expr : the gene's expression value.
|
|
463 """
|
|
464 expr = dataset.get(name, None)
|
|
465 if expr is None: ERRORS.append(name)
|
|
466
|
|
467 return expr
|
|
468
|
|
469 def ras_op_list(op_list: ruleUtils.OpList, dataset: Dict[str, Expr]) -> Ras:
|
|
470 """
|
|
471 Computes recursively the RAS (Reaction Activity Score) value for the given OpList, considering the specified flag to control None behavior.
|
|
472
|
|
473 Args:
|
|
474 op_list (OpList): The OpList representing a rule with gene values.
|
|
475 dataset : gene expression data of one cell line.
|
|
476
|
|
477 Returns:
|
|
478 Ras: The computed RAS value for the given OpList.
|
|
479 """
|
|
480 op = op_list.op
|
|
481 ras_value :Ras = None
|
|
482 if not op: return get_gene_expr(dataset, op_list[0])
|
|
483 if op is ruleUtils.RuleOp.AND and not ARGS.none and None in op_list: return None
|
|
484
|
|
485 for i in range(len(op_list)):
|
|
486 item = op_list[i]
|
|
487 if isinstance(item, ruleUtils.OpList):
|
|
488 item = ras_op_list(item, dataset)
|
|
489
|
|
490 else:
|
|
491 item = get_gene_expr(dataset, item)
|
|
492
|
|
493 if item is None:
|
|
494 if op is ruleUtils.RuleOp.AND and not ARGS.none: return None
|
|
495 continue
|
|
496
|
|
497 if ras_value is None:
|
|
498 ras_value = item
|
|
499 else:
|
|
500 ras_value = ras_value + item if op is ruleUtils.RuleOp.OR else min(ras_value, item)
|
|
501
|
|
502 return ras_value
|
|
503
|
|
504 def save_as_tsv(rasScores: Dict[str, Dict[str, Ras]], reactions :List[str]) -> None:
|
|
505 """
|
489
|
506 Save computed RAS scores to ARGS.ras_output as a TSV file.
|
93
|
507
|
|
508 Args:
|
|
509 rasScores : the computed ras scores.
|
489
|
510 reactions : the list of reaction IDs, used as the first column.
|
93
|
511
|
|
512 Returns:
|
|
513 None
|
|
514 """
|
|
515 for scores in rasScores.values(): # this is actually a lot faster than using the ootb dataframe metod, sadly
|
|
516 for reactId, score in scores.items():
|
|
517 if score is None: scores[reactId] = "None"
|
|
518
|
|
519 output_ras = pd.DataFrame.from_dict(rasScores)
|
|
520 output_ras.insert(0, 'Reactions', reactions)
|
|
521 output_ras.to_csv(ARGS.ras_output, sep = '\t', index = False)
|
|
522
|
|
523 ############################ MAIN #############################################
|
|
524 #TODO: not used but keep, it will be when the new translator dicts will be used.
|
|
525 def translateGene(geneName :str, encoding :str, geneTranslator :Dict[str, Dict[str, str]]) -> str:
|
|
526 """
|
|
527 Translate gene from any supported encoding to HugoID.
|
|
528
|
|
529 Args:
|
|
530 geneName (str): the name of the gene in its current encoding.
|
|
531 encoding (str): the encoding.
|
|
532 geneTranslator (Dict[str, Dict[str, str]]): the dict containing all supported gene names
|
|
533 and encodings in the current model, mapping each to the corresponding HugoID encoding.
|
|
534
|
|
535 Raises:
|
|
536 ValueError: When the gene isn't supported in the model.
|
|
537
|
|
538 Returns:
|
|
539 str: the gene in HugoID encoding.
|
|
540 """
|
|
541 supportedGenesInEncoding = geneTranslator[encoding]
|
|
542 if geneName in supportedGenesInEncoding: return supportedGenesInEncoding[geneName]
|
489
|
543 raise ValueError(f"Gene '{geneName}' not found. Please verify you are using the correct model.")
|
93
|
544
|
|
545 def load_custom_rules() -> Dict[str, ruleUtils.OpList]:
|
|
546 """
|
|
547 Opens custom rules file and extracts the rules. If the file is in .csv format an additional parsing step will be
|
|
548 performed, significantly impacting the runtime.
|
|
549
|
|
550 Returns:
|
|
551 Dict[str, ruleUtils.OpList] : dict mapping reaction IDs to rules.
|
|
552 """
|
489
|
553 datFilePath = utils.FilePath.fromStrPath(ARGS.model_upload) # actual file, stored in Galaxy as a .dat
|
|
554
|
|
555 dict_rule = {}
|
|
556
|
|
557 try:
|
|
558 rows = utils.readCsv(datFilePath, delimiter = "\t", skipHeader=False)
|
|
559 if len(rows) <= 1:
|
|
560 raise ValueError("Model tabular with 1 column is not supported.")
|
381
|
561
|
489
|
562 if not rows:
|
|
563 raise ValueError("Model tabular is file is empty.")
|
|
564
|
|
565 id_idx, idx_gpr = utils.findIdxByName(rows[0], "GPR")
|
|
566
|
|
567 # First, try using a tab delimiter
|
|
568 for line in rows[1:]:
|
|
569 if len(line) <= idx_gpr:
|
|
570 utils.logWarning(f"Skipping malformed line: {line}", ARGS.out_log)
|
|
571 continue
|
|
572
|
|
573 if line[idx_gpr] == "":
|
|
574 dict_rule[line[id_idx]] = ruleUtils.OpList([""])
|
|
575 else:
|
|
576 dict_rule[line[id_idx]] = ruleUtils.parseRuleToNestedList(line[idx_gpr])
|
|
577
|
|
578 except Exception as e:
|
|
579 # If parsing with tabs fails, try comma delimiter
|
|
580 try:
|
|
581 rows = utils.readCsv(datFilePath, delimiter = ",", skipHeader=False)
|
|
582
|
|
583 if len(rows) <= 1:
|
|
584 raise ValueError("Model tabular with 1 column is not supported.")
|
|
585
|
|
586 if not rows:
|
|
587 raise ValueError("Model tabular is file is empty.")
|
|
588
|
|
589 id_idx, idx_gpr = utils.findIdxByName(rows[0], "GPR")
|
|
590
|
|
591 # Try again parsing row content with the GPR column using comma-separated values
|
|
592 for line in rows[1:]:
|
|
593 if len(line) <= idx_gpr:
|
|
594 utils.logWarning(f"Skipping malformed line: {line}", ARGS.out_log)
|
|
595 continue
|
|
596
|
|
597 if line[idx_gpr] == "":
|
|
598 dict_rule[line[id_idx]] = ruleUtils.OpList([""])
|
|
599 else:
|
|
600 dict_rule[line[id_idx]] = ruleUtils.parseRuleToNestedList(line[idx_gpr])
|
|
601
|
|
602 except Exception as e2:
|
|
603 raise ValueError(f"Unable to parse rules file. Tried both tab and comma delimiters. Original errors: Tab: {e}, Comma: {e2}")
|
|
604
|
|
605 if not dict_rule:
|
|
606 raise ValueError("No valid rules found in the uploaded file. Please check the file format.")
|
93
|
607 # csv rules need to be parsed, those in a pickle format are taken to be pre-parsed.
|
489
|
608 return dict_rule
|
|
609
|
401
|
610
|
147
|
611 def main(args:List[str] = None) -> None:
|
93
|
612 """
|
|
613 Initializes everything and sets the program in motion based on the fronted input arguments.
|
|
614
|
|
615 Returns:
|
|
616 None
|
|
617 """
|
|
618 # get args from frontend (related xml)
|
|
619 global ARGS
|
147
|
620 ARGS = process_args(args)
|
309
|
621
|
93
|
622 # read dataset
|
|
623 dataset = read_dataset(ARGS.input, "dataset")
|
|
624 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)
|
|
625
|
|
626 # remove versioning from gene names
|
|
627 dataset.iloc[:, 0] = dataset.iloc[:, 0].str.split('.').str[0]
|
|
628
|
489
|
629 rules = load_custom_rules()
|
|
630 reactions = list(rules.keys())
|
93
|
631
|
489
|
632 save_as_tsv(ras_for_cell_lines(dataset, rules), reactions)
|
|
633 if ERRORS: utils.logWarning(
|
|
634 f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}",
|
|
635 ARGS.out_log)
|
381
|
636
|
489
|
637
|
|
638 print("Execution succeeded")
|
93
|
639
|
|
640 ###############################################################################
|
|
641 if __name__ == "__main__":
|
309
|
642 main()
|