| 410 | 1 import argparse | 
|  | 2 import utils.general_utils as utils | 
|  | 3 from typing import Optional, List | 
|  | 4 import os | 
|  | 5 import numpy as np | 
|  | 6 import pandas as pd | 
|  | 7 import cobra | 
|  | 8 import utils.CBS_backend as CBS_backend | 
|  | 9 from joblib import Parallel, delayed, cpu_count | 
|  | 10 from cobra.sampling import OptGPSampler | 
|  | 11 import sys | 
|  | 12 | 
|  | 13 | 
|  | 14 ################################# process args ############################### | 
|  | 15 def process_args(args :List[str] = None) -> argparse.Namespace: | 
|  | 16     """ | 
|  | 17     Processes command-line arguments. | 
|  | 18 | 
|  | 19     Args: | 
|  | 20         args (list): List of command-line arguments. | 
|  | 21 | 
|  | 22     Returns: | 
|  | 23         Namespace: An object containing parsed arguments. | 
|  | 24     """ | 
|  | 25     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 26                                      description = 'process some value\'s') | 
|  | 27 | 
|  | 28     parser.add_argument("-mo", "--model_upload", type = str, | 
|  | 29         help = "path to input file with custom rules, if provided") | 
|  | 30 | 
|  | 31     parser.add_argument('-ol', '--out_log', | 
|  | 32                         help = "Output log") | 
|  | 33 | 
|  | 34     parser.add_argument('-td', '--tool_dir', | 
|  | 35                         type = str, | 
|  | 36                         required = True, | 
|  | 37                         help = 'your tool directory') | 
|  | 38 | 
|  | 39     parser.add_argument('-in', '--input', | 
|  | 40                         required = True, | 
|  | 41                         type=str, | 
|  | 42                         help = 'inputs bounds') | 
|  | 43 | 
|  | 44     parser.add_argument('-ni', '--names', | 
|  | 45                         required = True, | 
|  | 46                         type=str, | 
|  | 47                         help = 'cell names') | 
|  | 48 | 
|  | 49     parser.add_argument('-a', '--algorithm', | 
|  | 50                         type = str, | 
|  | 51                         choices = ['OPTGP', 'CBS'], | 
|  | 52                         required = True, | 
|  | 53                         help = 'choose sampling algorithm') | 
|  | 54 | 
|  | 55     parser.add_argument('-th', '--thinning', | 
|  | 56                         type = int, | 
|  | 57                         default= 100, | 
|  | 58                         required=False, | 
|  | 59                         help = 'choose thinning') | 
|  | 60 | 
|  | 61     parser.add_argument('-ns', '--n_samples', | 
|  | 62                         type = int, | 
|  | 63                         required = True, | 
|  | 64                         help = 'choose how many samples') | 
|  | 65 | 
|  | 66     parser.add_argument('-sd', '--seed', | 
|  | 67                         type = int, | 
|  | 68                         required = True, | 
|  | 69                         help = 'seed') | 
|  | 70 | 
|  | 71     parser.add_argument('-nb', '--n_batches', | 
|  | 72                         type = int, | 
|  | 73                         required = True, | 
|  | 74                         help = 'choose how many batches') | 
|  | 75 | 
|  | 76     parser.add_argument('-ot', '--output_type', | 
|  | 77                         type = str, | 
|  | 78                         required = True, | 
|  | 79                         help = 'output type') | 
|  | 80 | 
|  | 81     parser.add_argument('-ota', '--output_type_analysis', | 
|  | 82                         type = str, | 
|  | 83                         required = False, | 
|  | 84                         help = 'output type analysis') | 
|  | 85 | 
|  | 86     parser.add_argument('-idop', '--output_path', | 
|  | 87                         type = str, | 
|  | 88                         default='flux_simulation', | 
|  | 89                         help = 'output path for maps') | 
|  | 90 | 
|  | 91     ARGS = parser.parse_args(args) | 
|  | 92     return ARGS | 
|  | 93 | 
|  | 94 ########################### warning ########################################### | 
|  | 95 def warning(s :str) -> None: | 
|  | 96     """ | 
|  | 97     Log a warning message to an output log file and print it to the console. | 
|  | 98 | 
|  | 99     Args: | 
|  | 100         s (str): The warning message to be logged and printed. | 
|  | 101 | 
|  | 102     Returns: | 
|  | 103       None | 
|  | 104     """ | 
|  | 105     with open(ARGS.out_log, 'a') as log: | 
|  | 106         log.write(s + "\n\n") | 
|  | 107     print(s) | 
|  | 108 | 
|  | 109 | 
|  | 110 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None: | 
|  | 111     dataset.index.name = 'Reactions' | 
|  | 112     dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index) | 
|  | 113 | 
|  | 114 ############################ dataset input #################################### | 
|  | 115 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 116     """ | 
|  | 117     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 118 | 
|  | 119     Args: | 
|  | 120         data (str): Path to the CSV file containing the dataset. | 
|  | 121         name (str): Name of the dataset, used in error messages. | 
|  | 122 | 
|  | 123     Returns: | 
|  | 124         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 125 | 
|  | 126     Raises: | 
|  | 127         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 128         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 129     """ | 
|  | 130     try: | 
|  | 131         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | 
|  | 132     except pd.errors.EmptyDataError: | 
|  | 133         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 134     if len(dataset.columns) < 2: | 
|  | 135         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 136     return dataset | 
|  | 137 | 
|  | 138 | 
|  | 139 | 
|  | 140 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None: | 
|  | 141     """ | 
|  | 142     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | 
|  | 143 | 
|  | 144     Args: | 
|  | 145         model (cobra.Model): The COBRA model to sample from. | 
|  | 146         model_name (str): The name of the model, used in naming output files. | 
|  | 147         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 148         thinning (int, optional): Thinning parameter for the sampler. Default is 100. | 
|  | 149         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 150         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 151 | 
|  | 152     Returns: | 
|  | 153         None | 
|  | 154     """ | 
|  | 155 | 
|  | 156     for i in range(0, n_batches): | 
|  | 157         optgp = OptGPSampler(model, thinning, seed) | 
|  | 158         samples = optgp.sample(n_samples) | 
|  | 159         samples.to_csv(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_OPTGP.csv', index=False) | 
|  | 160         seed+=1 | 
|  | 161     samplesTotal = pd.DataFrame() | 
|  | 162     for i in range(0, n_batches): | 
|  | 163         samples_batch = pd.read_csv(ARGS.output_path + "/"  +  model_name + '_'+ str(i)+'_OPTGP.csv') | 
|  | 164         samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | 
|  | 165 | 
|  | 166     write_to_file(samplesTotal.T, model_name, True) | 
|  | 167 | 
|  | 168     for i in range(0, n_batches): | 
|  | 169         os.remove(ARGS.output_path + "/" +   model_name + '_'+ str(i)+'_OPTGP.csv') | 
|  | 170     pass | 
|  | 171 | 
|  | 172 | 
|  | 173 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None: | 
|  | 174     """ | 
|  | 175     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | 
|  | 176 | 
|  | 177     Args: | 
|  | 178         model (cobra.Model): The COBRA model to sample from. | 
|  | 179         model_name (str): The name of the model, used in naming output files. | 
|  | 180         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 181         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 182         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 183 | 
|  | 184     Returns: | 
|  | 185         None | 
|  | 186     """ | 
|  | 187 | 
|  | 188     df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6) | 
|  | 189 | 
|  | 190     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed) | 
|  | 191 | 
|  | 192     for i in range(0, n_batches): | 
|  | 193         samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples)) | 
|  | 194         try: | 
|  | 195             CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) | 
|  | 196         except Exception as e: | 
|  | 197             utils.logWarning( | 
|  | 198             "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e), | 
|  | 199             ARGS.out_log) | 
|  | 200             CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], | 
|  | 201                                                     samples) | 
|  | 202         utils.logWarning(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log) | 
|  | 203         samples.to_csv(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_CBS.csv', index=False) | 
|  | 204 | 
|  | 205     samplesTotal = pd.DataFrame() | 
|  | 206     for i in range(0, n_batches): | 
|  | 207         samples_batch = pd.read_csv(ARGS.output_path + "/"  +  model_name + '_'+ str(i)+'_CBS.csv') | 
|  | 208         samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | 
|  | 209 | 
|  | 210     write_to_file(samplesTotal.T, model_name, True) | 
|  | 211 | 
|  | 212     for i in range(0, n_batches): | 
|  | 213         os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv') | 
|  | 214     pass | 
|  | 215 | 
|  | 216 | 
|  | 217 def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]: | 
|  | 218     """ | 
|  | 219     Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm. | 
|  | 220 | 
|  | 221     Args: | 
|  | 222         model_input_original (cobra.Model): The original COBRA model. | 
|  | 223         bounds_path (str): Path to the CSV file containing the bounds dataset. | 
|  | 224         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 225 | 
|  | 226     Returns: | 
|  | 227         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 228     """ | 
|  | 229 | 
|  | 230     model_input = model_input_original.copy() | 
|  | 231     bounds_df = read_dataset(bounds_path, "bounds dataset") | 
|  | 232     for rxn_index, row in bounds_df.iterrows(): | 
|  | 233         model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 
|  | 234         model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 
|  | 235 | 
|  | 236 | 
|  | 237     if ARGS.algorithm == 'OPTGP': | 
|  | 238         OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 
|  | 239 | 
|  | 240     elif ARGS.algorithm == 'CBS': | 
|  | 241         CBS_sampler(model_input,  cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 
|  | 242 | 
|  | 243     df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) | 
|  | 244 | 
|  | 245     if("fluxes" not in ARGS.output_types): | 
|  | 246         os.remove(ARGS.output_path + "/"  +  cell_name + '.csv') | 
|  | 247 | 
|  | 248     returnList = [] | 
|  | 249     returnList.append(df_mean) | 
|  | 250     returnList.append(df_median) | 
|  | 251     returnList.append(df_quantiles) | 
|  | 252 | 
|  | 253     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) | 
|  | 254 | 
|  | 255     if("pFBA" in ARGS.output_type_analysis): | 
|  | 256         returnList.append(df_pFBA) | 
|  | 257     if("FVA" in ARGS.output_type_analysis): | 
|  | 258         returnList.append(df_FVA) | 
|  | 259     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 260         returnList.append(df_sensitivity) | 
|  | 261 | 
|  | 262     return returnList | 
|  | 263 | 
|  | 264 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]: | 
|  | 265     """ | 
|  | 266     Computes statistics (mean, median, quantiles) for the fluxes. | 
|  | 267 | 
|  | 268     Args: | 
|  | 269         model_name (str): Name of the model, used in filename for input. | 
|  | 270         output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | 
|  | 271 | 
|  | 272     Returns: | 
|  | 273         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | 
|  | 274     """ | 
|  | 275 | 
|  | 276     df_mean = pd.DataFrame() | 
|  | 277     df_median= pd.DataFrame() | 
|  | 278     df_quantiles= pd.DataFrame() | 
|  | 279 | 
|  | 280     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T | 
|  | 281     df_samples = df_samples.round(8) | 
|  | 282 | 
|  | 283     for output_type in output_types: | 
|  | 284         if(output_type == "mean"): | 
|  | 285             df_mean = df_samples.mean() | 
|  | 286             df_mean = df_mean.to_frame().T | 
|  | 287             df_mean = df_mean.reset_index(drop=True) | 
|  | 288             df_mean.index = [model_name] | 
|  | 289         elif(output_type == "median"): | 
|  | 290             df_median = df_samples.median() | 
|  | 291             df_median = df_median.to_frame().T | 
|  | 292             df_median = df_median.reset_index(drop=True) | 
|  | 293             df_median.index = [model_name] | 
|  | 294         elif(output_type == "quantiles"): | 
|  | 295             newRow = [] | 
|  | 296             cols = [] | 
|  | 297             for rxn in df_samples.columns: | 
|  | 298                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | 
|  | 299                 newRow.append(quantiles[0.25]) | 
|  | 300                 cols.append(rxn + "_q1") | 
|  | 301                 newRow.append(quantiles[0.5]) | 
|  | 302                 cols.append(rxn + "_q2") | 
|  | 303                 newRow.append(quantiles[0.75]) | 
|  | 304                 cols.append(rxn + "_q3") | 
|  | 305             df_quantiles = pd.DataFrame(columns=cols) | 
|  | 306             df_quantiles.loc[0] = newRow | 
|  | 307             df_quantiles = df_quantiles.reset_index(drop=True) | 
|  | 308             df_quantiles.index = [model_name] | 
|  | 309 | 
|  | 310     return df_mean, df_median, df_quantiles | 
|  | 311 | 
|  | 312 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]: | 
|  | 313     """ | 
|  | 314     Performs flux analysis including pFBA, FVA, and sensitivity analysis. | 
|  | 315 | 
|  | 316     Args: | 
|  | 317         model (cobra.Model): The COBRA model to analyze. | 
|  | 318         model_name (str): Name of the model, used in filenames for output. | 
|  | 319         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | 
|  | 320 | 
|  | 321     Returns: | 
|  | 322         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | 
|  | 323     """ | 
|  | 324 | 
|  | 325     df_pFBA = pd.DataFrame() | 
|  | 326     df_FVA= pd.DataFrame() | 
|  | 327     df_sensitivity= pd.DataFrame() | 
|  | 328 | 
|  | 329     for output_type in output_types: | 
|  | 330         if(output_type == "pFBA"): | 
|  | 331             model.objective = "Biomass" | 
|  | 332             solution = cobra.flux_analysis.pfba(model) | 
|  | 333             fluxes = solution.fluxes | 
|  | 334             df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist() | 
|  | 335             df_pFBA = df_pFBA.reset_index(drop=True) | 
|  | 336             df_pFBA.index = [model_name] | 
|  | 337             df_pFBA = df_pFBA.astype(float).round(6) | 
|  | 338         elif(output_type == "FVA"): | 
|  | 339             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | 
|  | 340             columns = [] | 
|  | 341             for rxn in fva.index.to_list(): | 
|  | 342                 columns.append(rxn + "_min") | 
|  | 343                 columns.append(rxn + "_max") | 
|  | 344             df_FVA= pd.DataFrame(columns = columns) | 
|  | 345             for index_rxn, row in fva.iterrows(): | 
|  | 346                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | 
|  | 347                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | 
|  | 348             df_FVA = df_FVA.reset_index(drop=True) | 
|  | 349             df_FVA.index = [model_name] | 
|  | 350             df_FVA = df_FVA.astype(float).round(6) | 
|  | 351         elif(output_type == "sensitivity"): | 
|  | 352             model.objective = "Biomass" | 
|  | 353             solution_original = model.optimize().objective_value | 
|  | 354             reactions = model.reactions | 
|  | 355             single = cobra.flux_analysis.single_reaction_deletion(model) | 
|  | 356             newRow = [] | 
|  | 357             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | 
|  | 358             for rxn in reactions: | 
|  | 359                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | 
|  | 360             df_sensitivity.loc[model_name] = newRow | 
|  | 361             df_sensitivity = df_sensitivity.astype(float).round(6) | 
|  | 362     return df_pFBA, df_FVA, df_sensitivity | 
|  | 363 | 
|  | 364 ############################# main ########################################### | 
|  | 365 def main(args :List[str] = None) -> None: | 
|  | 366     """ | 
|  | 367     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 368 | 
|  | 369     Returns: | 
|  | 370         None | 
|  | 371     """ | 
|  | 372 | 
|  | 373     num_processors = cpu_count() | 
|  | 374 | 
|  | 375     global ARGS | 
|  | 376     ARGS = process_args(args) | 
|  | 377 | 
|  | 378     if not os.path.exists(ARGS.output_path): | 
|  | 379         os.makedirs(ARGS.output_path) | 
|  | 380 | 
|  | 381     #model_type :utils.Model = ARGS.model_selector | 
|  | 382     #if model_type is utils.Model.Custom: | 
|  | 383     #    model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | 
|  | 384     #else: | 
|  | 385     #    model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
|  | 386 | 
|  | 387     model = utils.build_cobra_model_from_csv(ARGS.model_upload) | 
|  | 388 | 
|  | 389     validation = utils.validate_model(model) | 
|  | 390 | 
|  | 391     print("\n=== VALIDAZIONE MODELLO ===") | 
|  | 392     for key, value in validation.items(): | 
|  | 393         print(f"{key}: {value}") | 
|  | 394 | 
|  | 395     #Set solver verbosity to 1 to see warning and error messages only. | 
|  | 396     model.solver.configuration.verbosity = 1 | 
|  | 397 | 
|  | 398     ARGS.bounds = ARGS.input.split(",") | 
|  | 399     ARGS.bounds_name = ARGS.names.split(",") | 
|  | 400     ARGS.output_types = ARGS.output_type.split(",") | 
|  | 401     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") | 
|  | 402 | 
|  | 403 | 
|  | 404     results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name)) | 
|  | 405 | 
|  | 406     all_mean = pd.concat([result[0] for result in results], ignore_index=False) | 
|  | 407     all_median = pd.concat([result[1] for result in results], ignore_index=False) | 
|  | 408     all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | 
|  | 409 | 
|  | 410     if("mean" in ARGS.output_types): | 
|  | 411         all_mean = all_mean.fillna(0.0) | 
|  | 412         all_mean = all_mean.sort_index() | 
|  | 413         write_to_file(all_mean.T, "mean", True) | 
|  | 414 | 
|  | 415     if("median" in ARGS.output_types): | 
|  | 416         all_median = all_median.fillna(0.0) | 
|  | 417         all_median = all_median.sort_index() | 
|  | 418         write_to_file(all_median.T, "median", True) | 
|  | 419 | 
|  | 420     if("quantiles" in ARGS.output_types): | 
|  | 421         all_quantiles = all_quantiles.fillna(0.0) | 
|  | 422         all_quantiles = all_quantiles.sort_index() | 
|  | 423         write_to_file(all_quantiles.T, "quantiles", True) | 
|  | 424 | 
|  | 425     index_result = 3 | 
|  | 426     if("pFBA" in ARGS.output_type_analysis): | 
|  | 427         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 428         all_pFBA = all_pFBA.sort_index() | 
|  | 429         write_to_file(all_pFBA.T, "pFBA", True) | 
|  | 430         index_result+=1 | 
|  | 431     if("FVA" in ARGS.output_type_analysis): | 
|  | 432         all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 433         all_FVA = all_FVA.sort_index() | 
|  | 434         write_to_file(all_FVA.T, "FVA", True) | 
|  | 435         index_result+=1 | 
|  | 436     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 437         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 438         all_sensitivity = all_sensitivity.sort_index() | 
|  | 439         write_to_file(all_sensitivity.T, "sensitivity", True) | 
|  | 440 | 
|  | 441     pass | 
|  | 442 | 
|  | 443 ############################################################################## | 
|  | 444 if __name__ == "__main__": | 
|  | 445     main() |