| 
542
 | 
     1 """
 | 
| 
 | 
     2 Flux sampling and analysis utilities for COBRA models.
 | 
| 
 | 
     3 
 | 
| 
 | 
     4 This script supports two modes:
 | 
| 
 | 
     5 - Mode 1 (model_and_bounds=True): load a base model and apply bounds from
 | 
| 
 | 
     6     separate files before sampling.
 | 
| 
 | 
     7 - Mode 2 (model_and_bounds=False): load complete models and sample directly.
 | 
| 
 | 
     8 
 | 
| 
 | 
     9 Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples
 | 
| 
 | 
    10 and optional analyses (pFBA, FVA, sensitivity), saved as tabular files.
 | 
| 
 | 
    11 """
 | 
| 
 | 
    12 
 | 
| 
 | 
    13 import argparse
 | 
| 
 | 
    14 from typing import List
 | 
| 
 | 
    15 import os
 | 
| 
 | 
    16 import pandas as pd
 | 
| 
 | 
    17 import numpy as np
 | 
| 
 | 
    18 import cobra
 | 
| 
 | 
    19 from joblib import Parallel, delayed, cpu_count
 | 
| 
 | 
    20 from cobra.sampling import OptGPSampler
 | 
| 
 | 
    21 import sys
 | 
| 
 | 
    22 
 | 
| 
 | 
    23 try:
 | 
| 
 | 
    24     from .utils import general_utils as utils
 | 
| 
 | 
    25     from .utils import CBS_backend
 | 
| 
 | 
    26     from .utils import model_utils
 | 
| 
 | 
    27 except:
 | 
| 
 | 
    28     import utils.general_utils as utils
 | 
| 
 | 
    29     import utils.CBS_backend as CBS_backend
 | 
| 
 | 
    30     import utils.model_utils as model_utils
 | 
| 
 | 
    31 
 | 
| 
 | 
    32 
 | 
| 
 | 
    33 ################################# process args ###############################
 | 
| 
 | 
    34 def process_args(args: List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    35     """
 | 
| 
 | 
    36     Processes command-line arguments.
 | 
| 
 | 
    37     
 | 
| 
 | 
    38     Args:
 | 
| 
 | 
    39         args (list): List of command-line arguments.
 | 
| 
 | 
    40     
 | 
| 
 | 
    41     Returns:
 | 
| 
 | 
    42         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    43     """
 | 
| 
 | 
    44     parser = argparse.ArgumentParser(usage='%(prog)s [options]',
 | 
| 
 | 
    45                                      description='process some value\'s')
 | 
| 
 | 
    46     
 | 
| 
 | 
    47     parser.add_argument("-mo", "--model_upload", type=str,
 | 
| 
 | 
    48         help="path to input file with custom rules, if provided")
 | 
| 
 | 
    49     
 | 
| 
 | 
    50     parser.add_argument("-mab", "--model_and_bounds", type=str,
 | 
| 
 | 
    51         choices=['True', 'False'],
 | 
| 
 | 
    52         required=True,
 | 
| 
 | 
    53         help="upload mode: True for model+bounds, False for complete models")
 | 
| 
 | 
    54     
 | 
| 
 | 
    55     parser.add_argument("-ens", "--sampling_enabled", type=str,
 | 
| 
 | 
    56         choices=['true', 'false'],
 | 
| 
 | 
    57         required=True,
 | 
| 
 | 
    58         help="enable sampling: 'true' for sampling, 'false' for no sampling")
 | 
| 
 | 
    59     
 | 
| 
 | 
    60     parser.add_argument('-ol', '--out_log',
 | 
| 
 | 
    61                         help="Output log")
 | 
| 
 | 
    62     
 | 
| 
 | 
    63     parser.add_argument('-td', '--tool_dir',
 | 
| 
 | 
    64                         type=str,
 | 
| 
 | 
    65                         default=os.path.dirname(os.path.abspath(__file__)),
 | 
| 
 | 
    66                         help='your tool directory (default: auto-detected package location)')
 | 
| 
 | 
    67     
 | 
| 
 | 
    68     parser.add_argument('-in', '--input',
 | 
| 
 | 
    69                         required=True,
 | 
| 
 | 
    70                         type=str,
 | 
| 
 | 
    71                         help='input bounds files or complete model files')
 | 
| 
 | 
    72     
 | 
| 
 | 
    73     parser.add_argument('-ni', '--name',
 | 
| 
 | 
    74                         required=True,
 | 
| 
 | 
    75                         type=str,
 | 
| 
 | 
    76                         help='cell names')
 | 
| 
 | 
    77     
 | 
| 
 | 
    78     parser.add_argument('-a', '--algorithm',
 | 
| 
 | 
    79                         type=str,
 | 
| 
 | 
    80                         choices=['OPTGP', 'CBS'],
 | 
| 
 | 
    81                         required=True,
 | 
| 
 | 
    82                         help='choose sampling algorithm')
 | 
| 
 | 
    83     
 | 
| 
 | 
    84     parser.add_argument('-th', '--thinning',
 | 
| 
 | 
    85                         type=int,
 | 
| 
 | 
    86                         default=100,
 | 
| 
 | 
    87                         required=True,
 | 
| 
 | 
    88                         help='choose thinning')
 | 
| 
 | 
    89     
 | 
| 
 | 
    90     parser.add_argument('-ns', '--n_samples',
 | 
| 
 | 
    91                         type=int,
 | 
| 
 | 
    92                         required=True,
 | 
| 
 | 
    93                         help='choose how many samples (set to 0 for optimization only)')
 | 
| 
 | 
    94     
 | 
| 
 | 
    95     parser.add_argument('-sd', '--seed',
 | 
| 
 | 
    96                         type=int,
 | 
| 
 | 
    97                         required=True,
 | 
| 
 | 
    98                         help='seed for random number generation')
 | 
| 
 | 
    99     
 | 
| 
 | 
   100     parser.add_argument('-nb', '--n_batches',
 | 
| 
 | 
   101                         type=int,
 | 
| 
 | 
   102                         required=True,
 | 
| 
 | 
   103                         help='choose how many batches')
 | 
| 
 | 
   104     
 | 
| 
 | 
   105     parser.add_argument('-opt', '--perc_opt',
 | 
| 
 | 
   106                         type=float,
 | 
| 
 | 
   107                         default=0.9,
 | 
| 
 | 
   108                         required=False,
 | 
| 
 | 
   109                         help='choose the fraction of optimality for FVA (0-1)')
 | 
| 
 | 
   110     
 | 
| 
 | 
   111     parser.add_argument('-ot', '--output_type',
 | 
| 
 | 
   112                         type=str,
 | 
| 
 | 
   113                         required=True,
 | 
| 
 | 
   114                         help='output type for sampling results')
 | 
| 
 | 
   115     
 | 
| 
 | 
   116     parser.add_argument('-ota', '--output_type_analysis',
 | 
| 
 | 
   117                         type=str,
 | 
| 
 | 
   118                         required=False,
 | 
| 
 | 
   119                         help='output type analysis (optimization methods)')
 | 
| 
 | 
   120 
 | 
| 
 | 
   121     parser.add_argument('-idop', '--output_path',
 | 
| 
 | 
   122                         type=str,
 | 
| 
 | 
   123                         default='flux_simulation/',
 | 
| 
 | 
   124                         help = 'output path for fluxes')
 | 
| 
 | 
   125     
 | 
| 
 | 
   126     parser.add_argument('-otm', '--out_mean',
 | 
| 
 | 
   127                     type = str,
 | 
| 
 | 
   128                     required=False,
 | 
| 
 | 
   129                     help = 'output of mean of fluxes')
 | 
| 
 | 
   130     
 | 
| 
 | 
   131     parser.add_argument('-otmd', '--out_median',
 | 
| 
 | 
   132                     type = str,
 | 
| 
 | 
   133                     required=False,
 | 
| 
 | 
   134                     help = 'output of median of fluxes')
 | 
| 
 | 
   135 
 | 
| 
 | 
   136     parser.add_argument('-otq', '--out_quantiles',
 | 
| 
 | 
   137                     type = str,
 | 
| 
 | 
   138                     required=False,
 | 
| 
 | 
   139                     help = 'output of quantiles of fluxes')
 | 
| 
 | 
   140     
 | 
| 
 | 
   141     parser.add_argument('-otfva', '--out_fva',
 | 
| 
 | 
   142                     type = str, 
 | 
| 
 | 
   143                     required=False,
 | 
| 
 | 
   144                     help = 'output of FVA results')
 | 
| 
 | 
   145     parser.add_argument('-otp', '--out_pfba',
 | 
| 
 | 
   146                     type = str,
 | 
| 
 | 
   147                     required=False,
 | 
| 
 | 
   148                     help = 'output of pFBA results')
 | 
| 
 | 
   149     parser.add_argument('-ots', '--out_sensitivity',
 | 
| 
 | 
   150                     type = str,
 | 
| 
 | 
   151                     required=False,
 | 
| 
 | 
   152                     help = 'output of sensitivity results')
 | 
| 
 | 
   153     ARGS = parser.parse_args(args)
 | 
| 
 | 
   154     return ARGS
 | 
| 
 | 
   155 ########################### warning ###########################################
 | 
| 
 | 
   156 def warning(s :str) -> None:
 | 
| 
 | 
   157     """
 | 
| 
 | 
   158     Log a warning message to an output log file and print it to the console.
 | 
| 
 | 
   159 
 | 
| 
 | 
   160     Args:
 | 
| 
 | 
   161         s (str): The warning message to be logged and printed.
 | 
| 
 | 
   162     
 | 
| 
 | 
   163     Returns:
 | 
| 
 | 
   164       None
 | 
| 
 | 
   165     """
 | 
| 
 | 
   166     with open(ARGS.out_log, 'a') as log:
 | 
| 
 | 
   167         log.write(s + "\n\n")
 | 
| 
 | 
   168     print(s)
 | 
| 
 | 
   169 
 | 
| 
 | 
   170 
 | 
| 
 | 
   171 def write_to_file(dataset: pd.DataFrame, path: str, keep_index:bool=False, name:str=None)->None:
 | 
| 
 | 
   172     """
 | 
| 
 | 
   173     Write a DataFrame to a TSV file under path with a given base name.
 | 
| 
 | 
   174 
 | 
| 
 | 
   175     Args:
 | 
| 
 | 
   176         dataset: The DataFrame to write.
 | 
| 
 | 
   177         name: Base file name (without extension). If None, 'path' is treated as the full file path.
 | 
| 
 | 
   178         path: Directory path where the file will be saved.
 | 
| 
 | 
   179         keep_index: Whether to keep the DataFrame index in the file.
 | 
| 
 | 
   180 
 | 
| 
 | 
   181     Returns:
 | 
| 
 | 
   182         None
 | 
| 
 | 
   183     """
 | 
| 
 | 
   184     dataset.index.name = 'Reactions'
 | 
| 
 | 
   185     if name:
 | 
| 
 | 
   186         dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index)
 | 
| 
 | 
   187     else:
 | 
| 
 | 
   188         dataset.to_csv(path, sep = '\t', index = keep_index)
 | 
| 
 | 
   189 
 | 
| 
 | 
   190 ############################ dataset input ####################################
 | 
| 
 | 
   191 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   192     """
 | 
| 
 | 
   193     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
   194 
 | 
| 
 | 
   195     Args:
 | 
| 
 | 
   196         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
   197         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
   198 
 | 
| 
 | 
   199     Returns:
 | 
| 
 | 
   200         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
   201 
 | 
| 
 | 
   202     Raises:
 | 
| 
 | 
   203         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
   204         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
   205     """
 | 
| 
 | 
   206     try:
 | 
| 
 | 
   207         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
 | 
| 
 | 
   208     except pd.errors.EmptyDataError:
 | 
| 
 | 
   209         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   210     if len(dataset.columns) < 2:
 | 
| 
 | 
   211         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   212     return dataset
 | 
| 
 | 
   213 
 | 
| 
 | 
   214 
 | 
| 
 | 
   215 
 | 
| 
 | 
   216 def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None:
 | 
| 
 | 
   217     """
 | 
| 
 | 
   218     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
 | 
| 
 | 
   219     
 | 
| 
 | 
   220     Args:
 | 
| 
 | 
   221         model (cobra.Model): The COBRA model to sample from.
 | 
| 
 | 
   222         model_name (str): The name of the model, used in naming output files.
 | 
| 
 | 
   223         n_samples (int, optional): Number of samples per batch. Default is 1000.
 | 
| 
 | 
   224         thinning (int, optional): Thinning parameter for the sampler. Default is 100.
 | 
| 
 | 
   225         n_batches (int, optional): Number of batches to run. Default is 1.
 | 
| 
 | 
   226         seed (int, optional): Random seed for reproducibility. Default is 0.
 | 
| 
 | 
   227         
 | 
| 
 | 
   228     Returns:
 | 
| 
 | 
   229         None
 | 
| 
 | 
   230     """
 | 
| 
 | 
   231     import numpy as np
 | 
| 
 | 
   232     
 | 
| 
 | 
   233     # Get reaction IDs for consistent column ordering
 | 
| 
 | 
   234     reaction_ids = [rxn.id for rxn in model.reactions]
 | 
| 
 | 
   235     
 | 
| 
 | 
   236     # Sample and save each batch as numpy file
 | 
| 
 | 
   237     for i in range(n_batches):
 | 
| 
 | 
   238         optgp = OptGPSampler(model, thinning, seed)
 | 
| 
 | 
   239         samples = optgp.sample(n_samples)
 | 
| 
 | 
   240         
 | 
| 
 | 
   241         # Save as numpy array (more memory efficient)
 | 
| 
 | 
   242         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
 | 
| 
 | 
   243         np.save(batch_filename, samples.to_numpy())
 | 
| 
 | 
   244         
 | 
| 
 | 
   245         seed += 1
 | 
| 
 | 
   246     
 | 
| 
 | 
   247     # Merge all batches into a single DataFrame
 | 
| 
 | 
   248     all_samples = []
 | 
| 
 | 
   249     
 | 
| 
 | 
   250     for i in range(n_batches):
 | 
| 
 | 
   251         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
 | 
| 
 | 
   252         batch_data = np.load(batch_filename, allow_pickle=True)
 | 
| 
 | 
   253         all_samples.append(batch_data)
 | 
| 
 | 
   254     
 | 
| 
 | 
   255     # Concatenate all batches
 | 
| 
 | 
   256     samplesTotal_array = np.vstack(all_samples)
 | 
| 
 | 
   257     
 | 
| 
 | 
   258     # Convert back to DataFrame with proper column names
 | 
| 
 | 
   259     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
 | 
| 
 | 
   260     
 | 
| 
 | 
   261     # Save the final merged result as CSV
 | 
| 
 | 
   262     write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name)
 | 
| 
 | 
   263     
 | 
| 
 | 
   264     # Clean up temporary numpy files
 | 
| 
 | 
   265     for i in range(n_batches):
 | 
| 
 | 
   266         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
 | 
| 
 | 
   267         if os.path.exists(batch_filename):
 | 
| 
 | 
   268             os.remove(batch_filename)
 | 
| 
 | 
   269 
 | 
| 
 | 
   270 
 | 
| 
 | 
   271 def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None:
 | 
| 
 | 
   272     """
 | 
| 
 | 
   273     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
 | 
| 
 | 
   274     
 | 
| 
 | 
   275     Args:
 | 
| 
 | 
   276         model (cobra.Model): The COBRA model to sample from.
 | 
| 
 | 
   277         model_name (str): The name of the model, used in naming output files.
 | 
| 
 | 
   278         n_samples (int, optional): Number of samples per batch. Default is 1000.
 | 
| 
 | 
   279         n_batches (int, optional): Number of batches to run. Default is 1.
 | 
| 
 | 
   280         seed (int, optional): Random seed for reproducibility. Default is 0.
 | 
| 
 | 
   281         
 | 
| 
 | 
   282     Returns:
 | 
| 
 | 
   283         None
 | 
| 
 | 
   284     """
 | 
| 
 | 
   285     import numpy as np
 | 
| 
 | 
   286     
 | 
| 
 | 
   287     # Get reaction IDs for consistent column ordering
 | 
| 
 | 
   288     reaction_ids = [reaction.id for reaction in model.reactions]
 | 
| 
 | 
   289     
 | 
| 
 | 
   290     # Perform FVA analysis once for all batches
 | 
| 
 | 
   291     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6)
 | 
| 
 | 
   292     
 | 
| 
 | 
   293     # Generate random objective functions for all samples across all batches
 | 
| 
 | 
   294     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed)
 | 
| 
 | 
   295     
 | 
| 
 | 
   296     # Sample and save each batch as numpy file
 | 
| 
 | 
   297     for i in range(n_batches):
 | 
| 
 | 
   298         samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples))
 | 
| 
 | 
   299         
 | 
| 
 | 
   300         try:
 | 
| 
 | 
   301             CBS_backend.randomObjectiveFunctionSampling(
 | 
| 
 | 
   302                 model, 
 | 
| 
 | 
   303                 n_samples, 
 | 
| 
 | 
   304                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], 
 | 
| 
 | 
   305                 samples
 | 
| 
 | 
   306             )
 | 
| 
 | 
   307         except Exception as e:
 | 
| 
 | 
   308             utils.logWarning(
 | 
| 
 | 
   309                 f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}",
 | 
| 
 | 
   310                 ARGS.out_log
 | 
| 
 | 
   311             )
 | 
| 
 | 
   312             CBS_backend.randomObjectiveFunctionSampling_cobrapy(
 | 
| 
 | 
   313                 model, 
 | 
| 
 | 
   314                 n_samples, 
 | 
| 
 | 
   315                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples],
 | 
| 
 | 
   316                 samples
 | 
| 
 | 
   317             )
 | 
| 
 | 
   318         
 | 
| 
 | 
   319         # Save as numpy array (more memory efficient)
 | 
| 
 | 
   320         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
 | 
| 
 | 
   321         utils.logWarning(batch_filename, ARGS.out_log)
 | 
| 
 | 
   322         np.save(batch_filename, samples.to_numpy())
 | 
| 
 | 
   323     
 | 
| 
 | 
   324     # Merge all batches into a single DataFrame
 | 
| 
 | 
   325     all_samples = []
 | 
| 
 | 
   326     
 | 
| 
 | 
   327     for i in range(n_batches):
 | 
| 
 | 
   328         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
 | 
| 
 | 
   329         batch_data = np.load(batch_filename, allow_pickle=True)
 | 
| 
 | 
   330         all_samples.append(batch_data)
 | 
| 
 | 
   331     
 | 
| 
 | 
   332     # Concatenate all batches
 | 
| 
 | 
   333     samplesTotal_array = np.vstack(all_samples)
 | 
| 
 | 
   334     
 | 
| 
 | 
   335     # Convert back to DataFrame with proper column namesq
 | 
| 
 | 
   336     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
 | 
| 
 | 
   337     
 | 
| 
 | 
   338     # Save the final merged result as CSV
 | 
| 
 | 
   339     write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name)
 | 
| 
 | 
   340     
 | 
| 
 | 
   341     # Clean up temporary numpy files
 | 
| 
 | 
   342     for i in range(n_batches):
 | 
| 
 | 
   343         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
 | 
| 
 | 
   344         if os.path.exists(batch_filename):
 | 
| 
 | 
   345             os.remove(batch_filename)
 | 
| 
 | 
   346 
 | 
| 
 | 
   347 
 | 
| 
 | 
   348 
 | 
| 
 | 
   349 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]:
 | 
| 
 | 
   350     """
 | 
| 
 | 
   351     MODE 1: Prepares the model with bounds from separate bounds file and performs sampling.
 | 
| 
 | 
   352 
 | 
| 
 | 
   353     Args:
 | 
| 
 | 
   354         model_input_original (cobra.Model): The original COBRA model.
 | 
| 
 | 
   355         bounds_path (str): Path to the CSV file containing the bounds dataset.
 | 
| 
 | 
   356         cell_name (str): Name of the cell, used to generate filenames for output.
 | 
| 
 | 
   357 
 | 
| 
 | 
   358     Returns:
 | 
| 
 | 
   359         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
 | 
| 
 | 
   360     """
 | 
| 
 | 
   361 
 | 
| 
 | 
   362     model_input = model_input_original.copy()
 | 
| 
 | 
   363     bounds_df = read_dataset(bounds_path, "bounds dataset")
 | 
| 
 | 
   364     
 | 
| 
 | 
   365     # Apply bounds to model
 | 
| 
 | 
   366     for rxn_index, row in bounds_df.iterrows():
 | 
| 
 | 
   367         try:
 | 
| 
 | 
   368             model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
 | 
| 
 | 
   369             model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
 | 
| 
 | 
   370         except KeyError:
 | 
| 
 | 
   371             warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.")
 | 
| 
 | 
   372     
 | 
| 
 | 
   373     return perform_sampling_and_analysis(model_input, cell_name)
 | 
| 
 | 
   374 
 | 
| 
 | 
   375 
 | 
| 
 | 
   376 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]:
 | 
| 
 | 
   377     """
 | 
| 
 | 
   378     Common function to perform sampling and analysis on a prepared model.
 | 
| 
 | 
   379 
 | 
| 
 | 
   380     Args:
 | 
| 
 | 
   381         model_input (cobra.Model): The prepared COBRA model with bounds applied.
 | 
| 
 | 
   382         cell_name (str): Name of the cell, used to generate filenames for output.
 | 
| 
 | 
   383 
 | 
| 
 | 
   384     Returns:
 | 
| 
 | 
   385         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
 | 
| 
 | 
   386     """
 | 
| 
 | 
   387 
 | 
| 
 | 
   388     returnList = []
 | 
| 
 | 
   389 
 | 
| 
 | 
   390     if ARGS.sampling_enabled == "true":
 | 
| 
 | 
   391     
 | 
| 
 | 
   392         if ARGS.algorithm == 'OPTGP':
 | 
| 
 | 
   393             OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
 | 
| 
 | 
   394         elif ARGS.algorithm == 'CBS':
 | 
| 
 | 
   395             CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
 | 
| 
 | 
   396 
 | 
| 
 | 
   397         df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types)
 | 
| 
 | 
   398 
 | 
| 
 | 
   399         if("fluxes" not in ARGS.output_types):
 | 
| 
 | 
   400             os.remove(ARGS.output_path + "/" + cell_name + '.csv')
 | 
| 
 | 
   401 
 | 
| 
 | 
   402         returnList = [df_mean, df_median, df_quantiles]
 | 
| 
 | 
   403 
 | 
| 
 | 
   404     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis)
 | 
| 
 | 
   405 
 | 
| 
 | 
   406     if("pFBA" in ARGS.output_type_analysis):
 | 
| 
 | 
   407         returnList.append(df_pFBA)
 | 
| 
 | 
   408     if("FVA" in ARGS.output_type_analysis):
 | 
| 
 | 
   409         returnList.append(df_FVA)
 | 
| 
 | 
   410     if("sensitivity" in ARGS.output_type_analysis):
 | 
| 
 | 
   411         returnList.append(df_sensitivity)
 | 
| 
 | 
   412 
 | 
| 
 | 
   413     return returnList
 | 
| 
 | 
   414 
 | 
| 
 | 
   415 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]:
 | 
| 
 | 
   416     """
 | 
| 
 | 
   417     Computes statistics (mean, median, quantiles) for the fluxes.
 | 
| 
 | 
   418 
 | 
| 
 | 
   419     Args:
 | 
| 
 | 
   420         model_name (str): Name of the model, used in filename for input.
 | 
| 
 | 
   421         output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
 | 
| 
 | 
   422 
 | 
| 
 | 
   423     Returns:
 | 
| 
 | 
   424         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
 | 
| 
 | 
   425     """
 | 
| 
 | 
   426 
 | 
| 
 | 
   427     df_mean = pd.DataFrame()
 | 
| 
 | 
   428     df_median= pd.DataFrame()
 | 
| 
 | 
   429     df_quantiles= pd.DataFrame()
 | 
| 
 | 
   430 
 | 
| 
 | 
   431     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T
 | 
| 
 | 
   432     df_samples = df_samples.round(8)
 | 
| 
 | 
   433 
 | 
| 
 | 
   434     for output_type in output_types:
 | 
| 
 | 
   435         if(output_type == "mean"):
 | 
| 
 | 
   436             df_mean = df_samples.mean()
 | 
| 
 | 
   437             df_mean = df_mean.to_frame().T
 | 
| 
 | 
   438             df_mean = df_mean.reset_index(drop=True)
 | 
| 
 | 
   439             df_mean.index = [model_name]
 | 
| 
 | 
   440         elif(output_type == "median"):
 | 
| 
 | 
   441             df_median = df_samples.median()
 | 
| 
 | 
   442             df_median = df_median.to_frame().T
 | 
| 
 | 
   443             df_median = df_median.reset_index(drop=True)
 | 
| 
 | 
   444             df_median.index = [model_name]
 | 
| 
 | 
   445         elif(output_type == "quantiles"):
 | 
| 
 | 
   446             newRow = []
 | 
| 
 | 
   447             cols = []
 | 
| 
 | 
   448             for rxn in df_samples.columns:
 | 
| 
 | 
   449                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
 | 
| 
 | 
   450                 newRow.append(quantiles[0.25])
 | 
| 
 | 
   451                 cols.append(rxn + "_q1")
 | 
| 
 | 
   452                 newRow.append(quantiles[0.5])
 | 
| 
 | 
   453                 cols.append(rxn + "_q2")
 | 
| 
 | 
   454                 newRow.append(quantiles[0.75])
 | 
| 
 | 
   455                 cols.append(rxn + "_q3")
 | 
| 
 | 
   456             df_quantiles = pd.DataFrame(columns=cols)
 | 
| 
 | 
   457             df_quantiles.loc[0] = newRow
 | 
| 
 | 
   458             df_quantiles = df_quantiles.reset_index(drop=True)
 | 
| 
 | 
   459             df_quantiles.index = [model_name]
 | 
| 
 | 
   460     
 | 
| 
 | 
   461     return df_mean, df_median, df_quantiles
 | 
| 
 | 
   462 
 | 
| 
 | 
   463 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]:
 | 
| 
 | 
   464     """
 | 
| 
 | 
   465     Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function
 | 
| 
 | 
   466     is assumed to be already set in the model.
 | 
| 
 | 
   467 
 | 
| 
 | 
   468     Args:
 | 
| 
 | 
   469         model (cobra.Model): The COBRA model to analyze.
 | 
| 
 | 
   470         model_name (str): Name of the model, used in filenames for output.
 | 
| 
 | 
   471         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
 | 
| 
 | 
   472 
 | 
| 
 | 
   473     Returns:
 | 
| 
 | 
   474         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
 | 
| 
 | 
   475     """
 | 
| 
 | 
   476 
 | 
| 
 | 
   477     df_pFBA = pd.DataFrame()
 | 
| 
 | 
   478     df_FVA= pd.DataFrame()
 | 
| 
 | 
   479     df_sensitivity= pd.DataFrame()
 | 
| 
 | 
   480 
 | 
| 
 | 
   481     for output_type in output_types:
 | 
| 
 | 
   482         if(output_type == "pFBA"):
 | 
| 
 | 
   483             solution = cobra.flux_analysis.pfba(model)
 | 
| 
 | 
   484             fluxes = solution.fluxes
 | 
| 
 | 
   485             df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist()
 | 
| 
 | 
   486             df_pFBA = df_pFBA.reset_index(drop=True)
 | 
| 
 | 
   487             df_pFBA.index = [model_name]
 | 
| 
 | 
   488             df_pFBA = df_pFBA.astype(float).round(6)
 | 
| 
 | 
   489         elif(output_type == "FVA"):
 | 
| 
 | 
   490             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8)
 | 
| 
 | 
   491             columns = []
 | 
| 
 | 
   492             for rxn in fva.index.to_list():
 | 
| 
 | 
   493                 columns.append(rxn + "_min")
 | 
| 
 | 
   494                 columns.append(rxn + "_max")
 | 
| 
 | 
   495             df_FVA= pd.DataFrame(columns = columns)
 | 
| 
 | 
   496             for index_rxn, row in fva.iterrows():
 | 
| 
 | 
   497                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
 | 
| 
 | 
   498                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
 | 
| 
 | 
   499             df_FVA = df_FVA.reset_index(drop=True)
 | 
| 
 | 
   500             df_FVA.index = [model_name]
 | 
| 
 | 
   501             df_FVA = df_FVA.astype(float).round(6)
 | 
| 
 | 
   502         elif(output_type == "sensitivity"):
 | 
| 
 | 
   503             solution_original = model.optimize().objective_value
 | 
| 
 | 
   504             reactions = model.reactions
 | 
| 
 | 
   505             single = cobra.flux_analysis.single_reaction_deletion(model)
 | 
| 
 | 
   506             newRow = []
 | 
| 
 | 
   507             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
 | 
| 
 | 
   508             for rxn in reactions:
 | 
| 
 | 
   509                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
 | 
| 
 | 
   510             df_sensitivity.loc[model_name] = newRow
 | 
| 
 | 
   511             df_sensitivity = df_sensitivity.astype(float).round(6)
 | 
| 
 | 
   512     return df_pFBA, df_FVA, df_sensitivity
 | 
| 
 | 
   513 
 | 
| 
 | 
   514 ############################# main ###########################################
 | 
| 
 | 
   515 def main(args: List[str] = None) -> None:
 | 
| 
 | 
   516     """
 | 
| 
 | 
   517     Initialize and run sampling/analysis based on the frontend input arguments.
 | 
| 
 | 
   518 
 | 
| 
 | 
   519     Returns:
 | 
| 
 | 
   520         None
 | 
| 
 | 
   521     """
 | 
| 
 | 
   522 
 | 
| 
 | 
   523     num_processors = max(1, cpu_count() - 1)
 | 
| 
 | 
   524 
 | 
| 
 | 
   525     global ARGS
 | 
| 
 | 
   526     ARGS = process_args(args)
 | 
| 
 | 
   527 
 | 
| 
 | 
   528     if not os.path.exists('flux_simulation'):
 | 
| 
 | 
   529         os.makedirs('flux_simulation')
 | 
| 
 | 
   530 
 | 
| 
 | 
   531     # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) ---
 | 
| 
 | 
   532     ARGS.input_files = ARGS.input.split(",") if ARGS.input else []
 | 
| 
 | 
   533     ARGS.file_names = ARGS.name.split(",")
 | 
| 
 | 
   534     # output types (required) -> list
 | 
| 
 | 
   535     ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else []
 | 
| 
 | 
   536     # optional analysis output types -> list or empty
 | 
| 
 | 
   537     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else []
 | 
| 
 | 
   538 
 | 
| 
 | 
   539     # Determine if sampling should be performed
 | 
| 
 | 
   540     if ARGS.sampling_enabled == "true":
 | 
| 
 | 
   541         perform_sampling = True
 | 
| 
 | 
   542     else:
 | 
| 
 | 
   543         perform_sampling = False
 | 
| 
 | 
   544 
 | 
| 
 | 
   545     print("=== INPUT FILES ===")
 | 
| 
 | 
   546     print(f"{ARGS.input_files}")
 | 
| 
 | 
   547     print(f"{ARGS.file_names}")
 | 
| 
 | 
   548     print(f"{ARGS.output_type}")
 | 
| 
 | 
   549     print(f"{ARGS.output_types}")
 | 
| 
 | 
   550     print(f"{ARGS.output_type_analysis}")
 | 
| 
 | 
   551     print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})")
 | 
| 
 | 
   552     
 | 
| 
 | 
   553     if ARGS.model_and_bounds == "True":
 | 
| 
 | 
   554         # MODE 1: Model + bounds (separate files)
 | 
| 
 | 
   555         print("=== MODE 1: Model + Bounds (separate files) ===")
 | 
| 
 | 
   556         
 | 
| 
 | 
   557         # Load base model
 | 
| 
 | 
   558         if not ARGS.model_upload:
 | 
| 
 | 
   559             sys.exit("Error: model_upload is required for Mode 1")
 | 
| 
 | 
   560 
 | 
| 
 | 
   561         base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload)
 | 
| 
 | 
   562 
 | 
| 
 | 
   563         validation = model_utils.validate_model(base_model)
 | 
| 
 | 
   564 
 | 
| 
 | 
   565         print("\n=== MODEL VALIDATION ===")
 | 
| 
 | 
   566         for key, value in validation.items():
 | 
| 
 | 
   567             print(f"{key}: {value}")
 | 
| 
 | 
   568 
 | 
| 
 | 
   569         # Set solver verbosity to 1 to see warning and error messages only.
 | 
| 
 | 
   570         base_model.solver.configuration.verbosity = 1
 | 
| 
 | 
   571 
 | 
| 
 | 
   572         # Process each bounds file with the base model
 | 
| 
 | 
   573         results = Parallel(n_jobs=num_processors)(
 | 
| 
 | 
   574             delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) 
 | 
| 
 | 
   575             for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
 | 
| 
 | 
   576         )
 | 
| 
 | 
   577 
 | 
| 
 | 
   578     else:
 | 
| 
 | 
   579         # MODE 2: Multiple complete models
 | 
| 
 | 
   580         print("=== MODE 2: Multiple complete models ===")
 | 
| 
 | 
   581         
 | 
| 
 | 
   582         # Process each complete model file
 | 
| 
 | 
   583         results = Parallel(n_jobs=num_processors)(
 | 
| 
 | 
   584             delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) 
 | 
| 
 | 
   585             for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
 | 
| 
 | 
   586         )
 | 
| 
 | 
   587 
 | 
| 
 | 
   588     # Handle sampling outputs (only if sampling was performed)
 | 
| 
 | 
   589     if perform_sampling:
 | 
| 
 | 
   590         print("=== PROCESSING SAMPLING RESULTS ===")
 | 
| 
 | 
   591         
 | 
| 
 | 
   592         all_mean = pd.concat([result[0] for result in results], ignore_index=False)
 | 
| 
 | 
   593         all_median = pd.concat([result[1] for result in results], ignore_index=False)
 | 
| 
 | 
   594         all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
 | 
| 
 | 
   595 
 | 
| 
 | 
   596         if "mean" in ARGS.output_types:
 | 
| 
 | 
   597             all_mean = all_mean.fillna(0.0)
 | 
| 
 | 
   598             all_mean = all_mean.sort_index()
 | 
| 
 | 
   599             write_to_file(all_mean.T, ARGS.out_mean, True)
 | 
| 
 | 
   600 
 | 
| 
 | 
   601         if "median" in ARGS.output_types:
 | 
| 
 | 
   602             all_median = all_median.fillna(0.0)
 | 
| 
 | 
   603             all_median = all_median.sort_index()
 | 
| 
 | 
   604             write_to_file(all_median.T, ARGS.out_median, True)
 | 
| 
 | 
   605         
 | 
| 
 | 
   606         if "quantiles" in ARGS.output_types:
 | 
| 
 | 
   607             all_quantiles = all_quantiles.fillna(0.0)
 | 
| 
 | 
   608             all_quantiles = all_quantiles.sort_index()
 | 
| 
 | 
   609             write_to_file(all_quantiles.T, ARGS.out_quantiles, True)
 | 
| 
 | 
   610     else:
 | 
| 
 | 
   611         print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===")
 | 
| 
 | 
   612 
 | 
| 
 | 
   613     # Handle optimization analysis outputs (always available)
 | 
| 
 | 
   614     print("=== PROCESSING OPTIMIZATION RESULTS ===")
 | 
| 
 | 
   615     
 | 
| 
 | 
   616     # Determine the starting index for optimization results
 | 
| 
 | 
   617     # If sampling was performed, optimization results start at index 3
 | 
| 
 | 
   618     # If no sampling, optimization results start at index 0
 | 
| 
 | 
   619     index_result = 3 if perform_sampling else 0
 | 
| 
 | 
   620     
 | 
| 
 | 
   621     if "pFBA" in ARGS.output_type_analysis:
 | 
| 
 | 
   622         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
 | 
| 
 | 
   623         all_pFBA = all_pFBA.sort_index()
 | 
| 
 | 
   624         write_to_file(all_pFBA.T, ARGS.out_pfba, True)
 | 
| 
 | 
   625         index_result += 1
 | 
| 
 | 
   626         
 | 
| 
 | 
   627     if "FVA" in ARGS.output_type_analysis:
 | 
| 
 | 
   628         all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False)
 | 
| 
 | 
   629         all_FVA = all_FVA.sort_index()
 | 
| 
 | 
   630         write_to_file(all_FVA.T, ARGS.out_fva, True)
 | 
| 
 | 
   631         index_result += 1
 | 
| 
 | 
   632         
 | 
| 
 | 
   633     if "sensitivity" in ARGS.output_type_analysis:
 | 
| 
 | 
   634         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
 | 
| 
 | 
   635         all_sensitivity = all_sensitivity.sort_index()
 | 
| 
 | 
   636         write_to_file(all_sensitivity.T, ARGS.out_sensitivity, True)
 | 
| 
 | 
   637 
 | 
| 
 | 
   638     return
 | 
| 
 | 
   639         
 | 
| 
 | 
   640 ##############################################################################
 | 
| 
 | 
   641 if __name__ == "__main__":
 | 
| 
539
 | 
   642     main() |