| 
542
 | 
     1 from __future__ import division
 | 
| 
 | 
     2 import csv
 | 
| 
 | 
     3 from enum import Enum
 | 
| 
 | 
     4 import re
 | 
| 
 | 
     5 import sys
 | 
| 
 | 
     6 import numpy as np
 | 
| 
 | 
     7 import pandas as pd
 | 
| 
 | 
     8 import itertools as it
 | 
| 
 | 
     9 import scipy.stats as st
 | 
| 
 | 
    10 import lxml.etree as ET
 | 
| 
 | 
    11 import math
 | 
| 
 | 
    12 try:
 | 
| 
 | 
    13     from .utils import general_utils as utils
 | 
| 
 | 
    14 except:
 | 
| 
 | 
    15     import utils.general_utils as utils
 | 
| 
 | 
    16 from PIL import Image
 | 
| 
 | 
    17 import os
 | 
| 
 | 
    18 import copy
 | 
| 
 | 
    19 import argparse
 | 
| 
 | 
    20 import pyvips
 | 
| 
 | 
    21 from PIL import Image
 | 
| 
 | 
    22 from typing import Tuple, Union, Optional, List, Dict
 | 
| 
 | 
    23 import matplotlib.pyplot as plt
 | 
| 
 | 
    24 
 | 
| 
 | 
    25 ERRORS = []
 | 
| 
 | 
    26 ########################## argparse ##########################################
 | 
| 
 | 
    27 ARGS :argparse.Namespace
 | 
| 
 | 
    28 def process_args(args:List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    29     """
 | 
| 
 | 
    30     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code.
 | 
| 
 | 
    31 
 | 
| 
 | 
    32     Args:
 | 
| 
 | 
    33         args : Always obtained (in file) from sys.argv
 | 
| 
 | 
    34 
 | 
| 
 | 
    35     Returns:
 | 
| 
 | 
    36         Namespace : An object containing the parsed arguments
 | 
| 
 | 
    37     """
 | 
| 
 | 
    38     parser = argparse.ArgumentParser(
 | 
| 
 | 
    39         usage = "%(prog)s [options]",
 | 
| 
 | 
    40         description = "process some value's genes to create a comparison's map.")
 | 
| 
 | 
    41     
 | 
| 
 | 
    42     #General:
 | 
| 
 | 
    43     parser.add_argument(
 | 
| 
 | 
    44         '-td', '--tool_dir',
 | 
| 
 | 
    45         type = str,
 | 
| 
 | 
    46         default = os.path.dirname(os.path.abspath(__file__)),
 | 
| 
 | 
    47         help = 'your tool directory (default: auto-detected package location)')
 | 
| 
 | 
    48     
 | 
| 
 | 
    49     parser.add_argument('-on', '--control', type = str)
 | 
| 
 | 
    50     parser.add_argument('-ol', '--out_log', help = "Output log")
 | 
| 
 | 
    51 
 | 
| 
 | 
    52     #Computation details:
 | 
| 
 | 
    53     parser.add_argument(
 | 
| 
 | 
    54         '-co', '--comparison',
 | 
| 
 | 
    55         type = str, 
 | 
| 
 | 
    56         default = 'manyvsmany',
 | 
| 
 | 
    57         choices = ['manyvsmany', 'onevsrest', 'onevsmany'])
 | 
| 
 | 
    58 
 | 
| 
 | 
    59     parser.add_argument(
 | 
| 
 | 
    60         '-te' ,'--test',
 | 
| 
 | 
    61         type = str, 
 | 
| 
 | 
    62         default = 'ks', 
 | 
| 
 | 
    63         choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw'],
 | 
| 
 | 
    64         help = 'Statistical test to use (default: %(default)s)')
 | 
| 
 | 
    65     
 | 
| 
 | 
    66     parser.add_argument(
 | 
| 
 | 
    67         '-pv' ,'--pValue',
 | 
| 
 | 
    68         type = float, 
 | 
| 
 | 
    69         default = 0.1, 
 | 
| 
 | 
    70         help = 'P-Value threshold (default: %(default)s)')
 | 
| 
 | 
    71 
 | 
| 
 | 
    72     parser.add_argument(
 | 
| 
 | 
    73         '-adj' ,'--adjusted',
 | 
| 
 | 
    74         type = utils.Bool("adjusted"), default = False, 
 | 
| 
 | 
    75         help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)')
 | 
| 
 | 
    76     
 | 
| 
 | 
    77     parser.add_argument(
 | 
| 
 | 
    78         '-fc', '--fChange',
 | 
| 
 | 
    79         type = float, 
 | 
| 
 | 
    80         default = 1.5, 
 | 
| 
 | 
    81         help = 'Fold-Change threshold (default: %(default)s)')
 | 
| 
 | 
    82     
 | 
| 
 | 
    83     parser.add_argument(
 | 
| 
 | 
    84         '-op', '--option',
 | 
| 
 | 
    85         type = str, 
 | 
| 
 | 
    86         choices = ['datasets', 'dataset_class'],
 | 
| 
 | 
    87         help='dataset or dataset and class')
 | 
| 
 | 
    88 
 | 
| 
 | 
    89     parser.add_argument(
 | 
| 
 | 
    90         '-idf', '--input_data_fluxes',
 | 
| 
 | 
    91         type = str,
 | 
| 
 | 
    92         help = 'input dataset fluxes')
 | 
| 
 | 
    93     
 | 
| 
 | 
    94     parser.add_argument(
 | 
| 
 | 
    95         '-icf', '--input_class_fluxes', 
 | 
| 
 | 
    96         type = str,
 | 
| 
 | 
    97         help = 'sample group specification fluxes')
 | 
| 
 | 
    98     
 | 
| 
 | 
    99     parser.add_argument(
 | 
| 
 | 
   100         '-idsf', '--input_datas_fluxes', 
 | 
| 
 | 
   101         type = str,
 | 
| 
 | 
   102         nargs = '+', 
 | 
| 
 | 
   103         help = 'input datasets fluxes')
 | 
| 
 | 
   104     
 | 
| 
 | 
   105     parser.add_argument(
 | 
| 
 | 
   106         '-naf', '--names_fluxes', 
 | 
| 
 | 
   107         type = str,
 | 
| 
 | 
   108         nargs = '+', 
 | 
| 
 | 
   109         help = 'input names fluxes')
 | 
| 
 | 
   110     
 | 
| 
 | 
   111     #Output:
 | 
| 
 | 
   112     parser.add_argument(
 | 
| 
 | 
   113         "-gs", "--generate_svg",
 | 
| 
 | 
   114         type = utils.Bool("generate_svg"), default = True,
 | 
| 
 | 
   115         help = "choose whether to generate svg")
 | 
| 
 | 
   116     
 | 
| 
 | 
   117     parser.add_argument(
 | 
| 
 | 
   118         "-gp", "--generate_pdf",
 | 
| 
 | 
   119         type = utils.Bool("generate_pdf"), default = True,
 | 
| 
 | 
   120         help = "choose whether to generate pdf")
 | 
| 
 | 
   121     
 | 
| 
 | 
   122     parser.add_argument(
 | 
| 
 | 
   123         '-cm', '--custom_map',
 | 
| 
 | 
   124         type = str,
 | 
| 
 | 
   125         help='custom map to use')
 | 
| 
 | 
   126     
 | 
| 
 | 
   127     parser.add_argument(
 | 
| 
 | 
   128         '-mc',  '--choice_map',
 | 
| 
 | 
   129         type = utils.Model, default = utils.Model.HMRcore,
 | 
| 
 | 
   130         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom])
 | 
| 
 | 
   131     
 | 
| 
 | 
   132     parser.add_argument(
 | 
| 
 | 
   133         '-colorm',  '--color_map',
 | 
| 
 | 
   134         type = str,
 | 
| 
 | 
   135         choices = ["jet", "viridis"])
 | 
| 
 | 
   136     
 | 
| 
 | 
   137     parser.add_argument(
 | 
| 
 | 
   138         '-idop', '--output_path', 
 | 
| 
 | 
   139         type = str,
 | 
| 
 | 
   140         default='result',
 | 
| 
 | 
   141         help = 'output path for maps')
 | 
| 
 | 
   142 
 | 
| 
 | 
   143     args :argparse.Namespace = parser.parse_args(args)
 | 
| 
 | 
   144     args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI
 | 
| 
 | 
   145 
 | 
| 
 | 
   146     return args
 | 
| 
 | 
   147 
 | 
| 
 | 
   148 ############################ dataset input ####################################
 | 
| 
 | 
   149 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   150     """
 | 
| 
 | 
   151     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame.
 | 
| 
 | 
   152 
 | 
| 
 | 
   153     Args:
 | 
| 
 | 
   154         data : filepath of a dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   155         name : name associated with the dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   156 
 | 
| 
 | 
   157     Returns:
 | 
| 
 | 
   158         pd.DataFrame : dataset in a runtime operable shape
 | 
| 
 | 
   159     
 | 
| 
 | 
   160     Raises:
 | 
| 
 | 
   161         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns
 | 
| 
 | 
   162     """
 | 
| 
 | 
   163     try:
 | 
| 
 | 
   164         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   165     except pd.errors.EmptyDataError:
 | 
| 
 | 
   166         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   167     if len(dataset.columns) < 2:
 | 
| 
 | 
   168         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   169     return dataset
 | 
| 
 | 
   170 
 | 
| 
 | 
   171 ############################ dataset name #####################################
 | 
| 
 | 
   172 def name_dataset(name_data :str, count :int) -> str:
 | 
| 
 | 
   173     """
 | 
| 
 | 
   174     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique.
 | 
| 
 | 
   175 
 | 
| 
 | 
   176     Args:
 | 
| 
 | 
   177         name_data : name associated with the dataset (from frontend input params)
 | 
| 
 | 
   178         count : counter from 1 to make these names unique (external)
 | 
| 
 | 
   179 
 | 
| 
 | 
   180     Returns:
 | 
| 
 | 
   181         str : the name made unique
 | 
| 
 | 
   182     """
 | 
| 
 | 
   183     if str(name_data) == 'Dataset':
 | 
| 
 | 
   184         return str(name_data) + '_' + str(count)
 | 
| 
 | 
   185     else:
 | 
| 
 | 
   186         return str(name_data)
 | 
| 
 | 
   187 
 | 
| 
 | 
   188 ############################ map_methods ######################################
 | 
| 
 | 
   189 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]]
 | 
| 
 | 
   190 def fold_change(avg1 :float, avg2 :float) -> FoldChange:
 | 
| 
 | 
   191     """
 | 
| 
 | 
   192     Calculates the fold change between two gene expression values.
 | 
| 
 | 
   193 
 | 
| 
 | 
   194     Args:
 | 
| 
 | 
   195         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset
 | 
| 
 | 
   196 
 | 
| 
 | 
   197     Returns:
 | 
| 
 | 
   198         FoldChange :
 | 
| 
 | 
   199             0 : when both input values are 0
 | 
| 
 | 
   200             "-INF" : when avg1 is 0
 | 
| 
 | 
   201             "INF" : when avg2 is 0
 | 
| 
 | 
   202             float : for any other combination of values
 | 
| 
 | 
   203     """
 | 
| 
 | 
   204     if avg1 == 0 and avg2 == 0:
 | 
| 
 | 
   205         return 0
 | 
| 
 | 
   206     elif avg1 == 0:
 | 
| 
 | 
   207         return '-INF'
 | 
| 
 | 
   208     elif avg2 == 0:
 | 
| 
 | 
   209         return 'INF'
 | 
| 
 | 
   210     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1
 | 
| 
 | 
   211         return (avg1 - avg2) / (abs(avg1) + abs(avg2))
 | 
| 
 | 
   212 
 | 
| 
 | 
   213 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]:
 | 
| 
 | 
   214     """
 | 
| 
 | 
   215     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but
 | 
| 
 | 
   216     not enforced, if more than one element with the exact ID is found only the first will be returned.
 | 
| 
 | 
   217 
 | 
| 
 | 
   218     Args:
 | 
| 
 | 
   219         reactionId (str): exact ID of the requested element.
 | 
| 
 | 
   220         metabMap (ET.ElementTree): metabolic map containing the element.
 | 
| 
 | 
   221 
 | 
| 
 | 
   222     Returns:
 | 
| 
 | 
   223         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr.
 | 
| 
 | 
   224     """
 | 
| 
 | 
   225     return utils.Result.Ok(
 | 
| 
 | 
   226         f"//*[@id=\"{reactionId}\"]").map(
 | 
| 
 | 
   227         lambda xPath : metabMap.xpath(xPath)[0]).mapErr(
 | 
| 
 | 
   228         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map"))
 | 
| 
 | 
   229         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user.
 | 
| 
 | 
   230 
 | 
| 
 | 
   231 def styleMapElement(element :ET.Element, styleStr :str) -> None:
 | 
| 
 | 
   232     currentStyles :str = element.get("style", "")
 | 
| 
 | 
   233     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles):
 | 
| 
 | 
   234         currentStyles = ';'.join(currentStyles.split(';')[:-3])
 | 
| 
 | 
   235 
 | 
| 
 | 
   236     element.set("style", currentStyles + styleStr)
 | 
| 
 | 
   237 
 | 
| 
 | 
   238 class ReactionDirection(Enum):
 | 
| 
 | 
   239     Unknown = ""
 | 
| 
 | 
   240     Direct  = "_F"
 | 
| 
 | 
   241     Inverse = "_B"
 | 
| 
 | 
   242 
 | 
| 
 | 
   243     @classmethod
 | 
| 
 | 
   244     def fromDir(cls, s :str) -> "ReactionDirection":
 | 
| 
 | 
   245         # vvv as long as there's so few variants I actually condone the if spam:
 | 
| 
 | 
   246         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct
 | 
| 
 | 
   247         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse
 | 
| 
 | 
   248         return ReactionDirection.Unknown
 | 
| 
 | 
   249 
 | 
| 
 | 
   250     @classmethod
 | 
| 
 | 
   251     def fromReactionId(cls, reactionId :str) -> "ReactionDirection":
 | 
| 
 | 
   252         return ReactionDirection.fromDir(reactionId[-2:])
 | 
| 
 | 
   253 
 | 
| 
 | 
   254 def getArrowBodyElementId(reactionId :str) -> str:
 | 
| 
 | 
   255     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   256     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2]
 | 
| 
 | 
   257     return f"R_{reactionId}"
 | 
| 
 | 
   258 
 | 
| 
 | 
   259 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]:
 | 
| 
 | 
   260     """
 | 
| 
 | 
   261     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions.
 | 
| 
 | 
   262 
 | 
| 
 | 
   263     Args:
 | 
| 
 | 
   264         reactionId : the provided reaction ID.
 | 
| 
 | 
   265 
 | 
| 
 | 
   266     Returns:
 | 
| 
 | 
   267         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try.
 | 
| 
 | 
   268     """
 | 
| 
 | 
   269     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   270     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], ""
 | 
| 
 | 
   271     return f"F_{reactionId}", f"B_{reactionId}"
 | 
| 
 | 
   272 
 | 
| 
 | 
   273 class ArrowColor(Enum):
 | 
| 
 | 
   274     """
 | 
| 
 | 
   275     Encodes possible arrow colors based on their meaning in the enrichment process.
 | 
| 
 | 
   276     """
 | 
| 
 | 
   277     Invalid       = "#BEBEBE" # gray, fold-change under treshold or not significant p-value
 | 
| 
 | 
   278     Transparent   = "#ffffff00" # transparent, to make some arrow segments disappear
 | 
| 
 | 
   279     UpRegulated   = "#ecac68" # red, up-regulated reaction
 | 
| 
 | 
   280     DownRegulated = "#6495ed" # blue, down-regulated reaction
 | 
| 
 | 
   281 
 | 
| 
 | 
   282     UpRegulatedInv = "#FF0000"
 | 
| 
 | 
   283     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with
 | 
| 
 | 
   284     # conflicting enrichment in the two directions.
 | 
| 
 | 
   285 
 | 
| 
 | 
   286     DownRegulatedInv = "#0000FF"
 | 
| 
 | 
   287     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with
 | 
| 
 | 
   288     # conflicting enrichment in the two directions.
 | 
| 
 | 
   289 
 | 
| 
 | 
   290     @classmethod
 | 
| 
 | 
   291     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor":
 | 
| 
 | 
   292         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv)
 | 
| 
 | 
   293         return colors[useAltColor]
 | 
| 
 | 
   294 
 | 
| 
 | 
   295     def __str__(self) -> str: return self.value
 | 
| 
 | 
   296 
 | 
| 
 | 
   297 class Arrow:
 | 
| 
 | 
   298     """
 | 
| 
 | 
   299     Models the properties of a reaction arrow that change based on enrichment.
 | 
| 
 | 
   300     """
 | 
| 
 | 
   301     MIN_W = 2
 | 
| 
 | 
   302     MAX_W = 12
 | 
| 
 | 
   303 
 | 
| 
 | 
   304     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None:
 | 
| 
 | 
   305         """
 | 
| 
 | 
   306         (Private) Initializes an instance of Arrow.
 | 
| 
 | 
   307 
 | 
| 
 | 
   308         Args:
 | 
| 
 | 
   309             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced).
 | 
| 
 | 
   310             col : color of the arrow.
 | 
| 
 | 
   311             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant.
 | 
| 
 | 
   312         
 | 
| 
 | 
   313         Returns:
 | 
| 
 | 
   314             None : practically, a Arrow instance.
 | 
| 
 | 
   315         """
 | 
| 
 | 
   316         self.w    = width
 | 
| 
 | 
   317         self.col  = col
 | 
| 
 | 
   318         self.dash = isDashed
 | 
| 
 | 
   319     
 | 
| 
 | 
   320     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None:
 | 
| 
 | 
   321         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr:
 | 
| 
 | 
   322             ERRORS.append(reactionId)
 | 
| 
 | 
   323 
 | 
| 
 | 
   324     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None:
 | 
| 
 | 
   325         if not mindReactionDir:
 | 
| 
 | 
   326             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   327         
 | 
| 
 | 
   328         # Now we style the arrow head(s):
 | 
| 
 | 
   329         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   330         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   331         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   332 
 | 
| 
 | 
   333     def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None:
 | 
| 
 | 
   334 
 | 
| 
 | 
   335         self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   336         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   337 
 | 
| 
 | 
   338         if(isNegative):
 | 
| 
 | 
   339             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   340             self.col = ArrowColor.Transparent
 | 
| 
 | 
   341             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp
 | 
| 
 | 
   342         else:
 | 
| 
 | 
   343             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   344             self.col = ArrowColor.Transparent
 | 
| 
 | 
   345             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp
 | 
| 
 | 
   346 
 | 
| 
 | 
   347 
 | 
| 
 | 
   348     
 | 
| 
 | 
   349     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str:
 | 
| 
 | 
   350         """
 | 
| 
 | 
   351         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset.
 | 
| 
 | 
   352 
 | 
| 
 | 
   353         Args:
 | 
| 
 | 
   354             reactionId: the reaction ID, as encoded in the dataset.
 | 
| 
 | 
   355             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result.
 | 
| 
 | 
   356     
 | 
| 
 | 
   357         Returns:
 | 
| 
 | 
   358             str : the ID of an arrow's body or tips in the map.
 | 
| 
 | 
   359         """
 | 
| 
 | 
   360         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map.
 | 
| 
 | 
   361         if not mindReactionDir: return "R_" + reactionId
 | 
| 
 | 
   362 
 | 
| 
 | 
   363         #TODO: this is clearly something we need to make consistent in fluxes
 | 
| 
 | 
   364         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr"
 | 
| 
 | 
   365 
 | 
| 
 | 
   366     def toStyleStr(self, *, downSizedForTips = False) -> str:
 | 
| 
 | 
   367         """
 | 
| 
 | 
   368         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element.
 | 
| 
 | 
   369 
 | 
| 
 | 
   370         Returns:
 | 
| 
 | 
   371             str : the styles string.
 | 
| 
 | 
   372         """
 | 
| 
 | 
   373         width = self.w
 | 
| 
 | 
   374         if downSizedForTips: width *= 0.8
 | 
| 
 | 
   375         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}"
 | 
| 
 | 
   376 
 | 
| 
 | 
   377 # vvv These constants could be inside the class itself a static properties, but python
 | 
| 
 | 
   378 # was built by brainless organisms so here we are!
 | 
| 
 | 
   379 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid)
 | 
| 
 | 
   380 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True)
 | 
| 
 | 
   381 
 | 
| 
 | 
   382 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None:
 | 
| 
 | 
   383     """
 | 
| 
 | 
   384     Applies fluxes enrichment results to the provided metabolic map.
 | 
| 
 | 
   385 
 | 
| 
 | 
   386     Args:
 | 
| 
 | 
   387         fluxesEnrichmentRes : fluxes enrichment results.
 | 
| 
 | 
   388         metabMap : the metabolic map to edit.
 | 
| 
 | 
   389         maxNumericZScore : biggest finite z-score value found.
 | 
| 
 | 
   390     
 | 
| 
 | 
   391     Side effects:
 | 
| 
 | 
   392         metabMap : mut
 | 
| 
 | 
   393     
 | 
| 
 | 
   394     Returns:
 | 
| 
 | 
   395         None
 | 
| 
 | 
   396     """
 | 
| 
 | 
   397     for reactionId, values in fluxesEnrichmentRes.items():
 | 
| 
 | 
   398         pValue = values[0]
 | 
| 
 | 
   399         foldChange = values[1]
 | 
| 
 | 
   400         z_score = values[2]
 | 
| 
 | 
   401 
 | 
| 
 | 
   402         if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)):
 | 
| 
 | 
   403             continue
 | 
| 
 | 
   404 
 | 
| 
 | 
   405         if isinstance(foldChange, str): foldChange = float(foldChange)
 | 
| 
 | 
   406         if pValue > ARGS.pValue: # pValue above tresh: dashed arrow
 | 
| 
 | 
   407             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   408             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   409 
 | 
| 
 | 
   410             continue
 | 
| 
 | 
   411 
 | 
| 
 | 
   412         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1):
 | 
| 
 | 
   413             INVALID_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   414             INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   415 
 | 
| 
 | 
   416             continue
 | 
| 
 | 
   417         
 | 
| 
 | 
   418         width = Arrow.MAX_W
 | 
| 
 | 
   419         if not math.isinf(z_score):
 | 
| 
 | 
   420             try: 
 | 
| 
 | 
   421                 width = min(
 | 
| 
 | 
   422                     max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W),
 | 
| 
 | 
   423                     Arrow.MAX_W) 
 | 
| 
 | 
   424 
 | 
| 
 | 
   425             except ZeroDivisionError: pass
 | 
| 
 | 
   426         # TODO CHECK RV
 | 
| 
 | 
   427         #if not reactionId.endswith("_RV"): # RV stands for reversible reactions
 | 
| 
 | 
   428         #   Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   429         #   continue
 | 
| 
 | 
   430         
 | 
| 
 | 
   431         #reactionId = reactionId[:-3] # Remove "_RV"
 | 
| 
 | 
   432         
 | 
| 
 | 
   433         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score
 | 
| 
 | 
   434         if inversionScore == 2: foldChange *= -1
 | 
| 
 | 
   435         # ^^^ Style the inverse direction with the opposite sign netValue
 | 
| 
 | 
   436         
 | 
| 
 | 
   437         # If the score is 1 (opposite signs) we use alternative colors vvv
 | 
| 
 | 
   438         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1))
 | 
| 
 | 
   439         
 | 
| 
 | 
   440         # vvv These 2 if statements can both be true and can both happen
 | 
| 
 | 
   441         if ARGS.net: # style arrow head(s):
 | 
| 
 | 
   442             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F"))
 | 
| 
 | 
   443             arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None")
 | 
| 
 | 
   444 
 | 
| 
 | 
   445         arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   446 
 | 
| 
 | 
   447 
 | 
| 
 | 
   448 ############################ split class ######################################
 | 
| 
 | 
   449 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]:
 | 
| 
 | 
   450     """
 | 
| 
 | 
   451     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to.
 | 
| 
 | 
   452 
 | 
| 
 | 
   453     Args:
 | 
| 
 | 
   454         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict
 | 
| 
 | 
   455         resolve_rules : a :dict containing :float data
 | 
| 
 | 
   456 
 | 
| 
 | 
   457     Returns:
 | 
| 
 | 
   458         dict : the dict with data grouped by class
 | 
| 
 | 
   459 
 | 
| 
 | 
   460     Side effects:
 | 
| 
 | 
   461         classes : mut
 | 
| 
 | 
   462     """
 | 
| 
 | 
   463     class_pat :Dict[str, List[List[float]]] = {}
 | 
| 
 | 
   464     for i in range(len(classes)):
 | 
| 
 | 
   465         classe :str = classes.iloc[i, 1]
 | 
| 
 | 
   466         if pd.isnull(classe): continue
 | 
| 
 | 
   467 
 | 
| 
 | 
   468         l :List[List[float]] = []
 | 
| 
 | 
   469         for j in range(i, len(classes)):
 | 
| 
 | 
   470             if classes.iloc[j, 1] == classe:
 | 
| 
 | 
   471                 pat_id :str = classes.iloc[j, 0]
 | 
| 
 | 
   472                 tmp = resolve_rules.get(pat_id, None)
 | 
| 
 | 
   473                 if tmp != None:
 | 
| 
 | 
   474                     l.append(tmp)
 | 
| 
 | 
   475                 classes.iloc[j, 1] = None
 | 
| 
 | 
   476         
 | 
| 
 | 
   477         if l:
 | 
| 
 | 
   478             class_pat[classe] = list(map(list, zip(*l)))
 | 
| 
 | 
   479             continue
 | 
| 
 | 
   480         
 | 
| 
 | 
   481         utils.logWarning(
 | 
| 
 | 
   482             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log)
 | 
| 
 | 
   483     
 | 
| 
 | 
   484     return class_pat
 | 
| 
 | 
   485 
 | 
| 
 | 
   486 ############################ conversion ##############################################
 | 
| 
 | 
   487 #conversion from svg to png 
 | 
| 
 | 
   488 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None:
 | 
| 
 | 
   489     """
 | 
| 
 | 
   490     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion.
 | 
| 
 | 
   491 
 | 
| 
 | 
   492     Args:
 | 
| 
 | 
   493         svg_path : path to SVG file
 | 
| 
 | 
   494         png_path : path for new PNG file
 | 
| 
 | 
   495         dpi : dots per inch of the generated PNG
 | 
| 
 | 
   496         scale : scaling factor for the generated PNG, computed internally when a size is provided
 | 
| 
 | 
   497         size : final effective width of the generated PNG
 | 
| 
 | 
   498 
 | 
| 
 | 
   499     Returns:
 | 
| 
 | 
   500         None
 | 
| 
 | 
   501     """
 | 
| 
 | 
   502     if size:
 | 
| 
 | 
   503         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1)
 | 
| 
 | 
   504         scale = size / image.width
 | 
| 
 | 
   505         image = image.resize(scale)
 | 
| 
 | 
   506     else:
 | 
| 
 | 
   507         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale)
 | 
| 
 | 
   508 
 | 
| 
 | 
   509     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255])
 | 
| 
 | 
   510     white_background = white_background.affine([scale, 0, 0, scale])
 | 
| 
 | 
   511 
 | 
| 
 | 
   512     if white_background.bands != image.bands:
 | 
| 
 | 
   513         white_background = white_background.extract_band(0)
 | 
| 
 | 
   514 
 | 
| 
 | 
   515     composite_image = white_background.composite2(image, 'over')
 | 
| 
 | 
   516     composite_image.write_to_file(png_path.show())
 | 
| 
 | 
   517 
 | 
| 
 | 
   518 #funzione unica, lascio fuori i file e li passo in input
 | 
| 
 | 
   519 #conversion from png to pdf
 | 
| 
 | 
   520 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None:
 | 
| 
 | 
   521     """
 | 
| 
 | 
   522     Internal utility to convert a PNG to PDF to aid from SVG conversion.
 | 
| 
 | 
   523 
 | 
| 
 | 
   524     Args:
 | 
| 
 | 
   525         png_file : path to PNG file
 | 
| 
 | 
   526         pdf_file : path to new PDF file
 | 
| 
 | 
   527 
 | 
| 
 | 
   528     Returns:
 | 
| 
 | 
   529         None
 | 
| 
 | 
   530     """
 | 
| 
 | 
   531     image = Image.open(png_file.show())
 | 
| 
 | 
   532     image = image.convert("RGB")
 | 
| 
 | 
   533     image.save(pdf_file.show(), "PDF", resolution=100.0)
 | 
| 
 | 
   534 
 | 
| 
 | 
   535 #function called to reduce redundancy in the code
 | 
| 
 | 
   536 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None:
 | 
| 
 | 
   537     """
 | 
| 
 | 
   538     Converts the SVG map at the provided path to PDF.
 | 
| 
 | 
   539 
 | 
| 
 | 
   540     Args:
 | 
| 
 | 
   541         file_svg : path to SVG file
 | 
| 
 | 
   542         file_png : path to PNG file
 | 
| 
 | 
   543         file_pdf : path to new PDF file
 | 
| 
 | 
   544 
 | 
| 
 | 
   545     Returns:
 | 
| 
 | 
   546         None
 | 
| 
 | 
   547     """
 | 
| 
 | 
   548     svg_to_png_with_background(file_svg, file_png)
 | 
| 
 | 
   549     try:
 | 
| 
 | 
   550         convert_png_to_pdf(file_png, file_pdf)
 | 
| 
 | 
   551         print(f'PDF file {file_pdf.filePath} successfully generated.')
 | 
| 
 | 
   552     
 | 
| 
 | 
   553     except Exception as e:
 | 
| 
 | 
   554         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}')
 | 
| 
 | 
   555 
 | 
| 
 | 
   556 ############################ map ##############################################
 | 
| 
 | 
   557 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath:
 | 
| 
 | 
   558     """
 | 
| 
 | 
   559     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the
 | 
| 
 | 
   560     "result/" folder, used by this tool for output files in collections.
 | 
| 
 | 
   561 
 | 
| 
 | 
   562     Args:
 | 
| 
 | 
   563         dataset1Name : _description_
 | 
| 
 | 
   564         dataset2Name : _description_. Defaults to "rest".
 | 
| 
 | 
   565         details : _description_
 | 
| 
 | 
   566         ext : _description_
 | 
| 
 | 
   567 
 | 
| 
 | 
   568     Returns:
 | 
| 
 | 
   569         utils.FilePath : _description_
 | 
| 
 | 
   570     """
 | 
| 
 | 
   571     # This function returns a util data structure but is extremely specific to this module.
 | 
| 
 | 
   572     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait
 | 
| 
 | 
   573     # TODO: until a third tool with multiple outputs appears before porting this to utils.
 | 
| 
 | 
   574     return utils.FilePath(
 | 
| 
 | 
   575         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""),
 | 
| 
 | 
   576         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in
 | 
| 
 | 
   577         # all output files: I don't care, this was never the performance bottleneck of the tool and
 | 
| 
 | 
   578         # there is no other net gain in saving and re-using the built string.
 | 
| 
 | 
   579         ext,
 | 
| 
 | 
   580         prefix = ARGS.output_path)
 | 
| 
 | 
   581 
 | 
| 
 | 
   582 FIELD_NOT_AVAILABLE = '/'
 | 
| 
 | 
   583 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None:
 | 
| 
 | 
   584     fieldsAmt = len(fieldNames)
 | 
| 
 | 
   585     with open(outPath.show(), "w", newline = "") as fd:
 | 
| 
 | 
   586         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t')
 | 
| 
 | 
   587         writer.writeheader()
 | 
| 
 | 
   588         
 | 
| 
 | 
   589         for row in rows:
 | 
| 
 | 
   590             sizeMismatch = fieldsAmt - len(row)
 | 
| 
 | 
   591             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch)
 | 
| 
 | 
   592             writer.writerow({ field : data for field, data in zip(fieldNames, row) })
 | 
| 
 | 
   593 
 | 
| 
 | 
   594 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible
 | 
| 
 | 
   595 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None:
 | 
| 
 | 
   596     fieldNames = ["ids", "P_Value", "fold change", "z-score"]
 | 
| 
 | 
   597     fieldNames.extend(["average_1", "average_2"])
 | 
| 
 | 
   598 
 | 
| 
 | 
   599     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath)
 | 
| 
 | 
   600 
 | 
| 
 | 
   601 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None:
 | 
| 
 | 
   602     # this function compiles the things always in common between comparison modes after enrichment.
 | 
| 
 | 
   603     # TODO: organize, name better.
 | 
| 
 | 
   604     writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV))
 | 
| 
 | 
   605     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData)
 | 
| 
 | 
   606     applyFluxesEnrichmentToMap(tmp, core_map, max_z_score)
 | 
| 
 | 
   607 
 | 
| 
 | 
   608 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]:
 | 
| 
 | 
   609     """
 | 
| 
 | 
   610     Computes the statistical significance score (P-value) of the comparison between coherent data
 | 
| 
 | 
   611     from two datasets. The data is supposed to, in both datasets:
 | 
| 
 | 
   612     - be related to the same reaction ID;
 | 
| 
 | 
   613     - be ordered by sample, such that the item at position i in both lists is related to the
 | 
| 
 | 
   614       same sample or cell line.
 | 
| 
 | 
   615 
 | 
| 
 | 
   616     Args:
 | 
| 
 | 
   617         dataset1Data : data from the 1st dataset.
 | 
| 
 | 
   618         dataset2Data : data from the 2nd dataset.
 | 
| 
 | 
   619 
 | 
| 
 | 
   620     Returns:
 | 
| 
 | 
   621         tuple: (P-value, Z-score)
 | 
| 
 | 
   622             - P-value from the selected test on the provided data.
 | 
| 
 | 
   623             - Z-score of the difference between means of the two datasets.
 | 
| 
 | 
   624     """
 | 
| 
 | 
   625 
 | 
| 
 | 
   626     match ARGS.test:
 | 
| 
 | 
   627         case "ks":
 | 
| 
 | 
   628             # Perform Kolmogorov-Smirnov test
 | 
| 
 | 
   629             _, p_value = st.ks_2samp(dataset1Data, dataset2Data)
 | 
| 
 | 
   630         case "ttest_p":
 | 
| 
 | 
   631             # Datasets should have same size
 | 
| 
 | 
   632             if len(dataset1Data) != len(dataset2Data):
 | 
| 
 | 
   633                 raise ValueError("Datasets must have the same size for paired t-test.")
 | 
| 
 | 
   634             # Perform t-test for paired samples
 | 
| 
 | 
   635             _, p_value = st.ttest_rel(dataset1Data, dataset2Data)
 | 
| 
 | 
   636         case "ttest_ind":
 | 
| 
 | 
   637             # Perform t-test for independent samples
 | 
| 
 | 
   638             _, p_value = st.ttest_ind(dataset1Data, dataset2Data)
 | 
| 
 | 
   639         case "wilcoxon":
 | 
| 
 | 
   640             # Datasets should have same size
 | 
| 
 | 
   641             if len(dataset1Data) != len(dataset2Data):
 | 
| 
 | 
   642                 raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.")
 | 
| 
 | 
   643             # Perform Wilcoxon signed-rank test
 | 
| 
 | 
   644             np.random.seed(42)  # Ensure reproducibility since zsplit method is used
 | 
| 
 | 
   645             _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method="zsplit")
 | 
| 
 | 
   646         case "mw":
 | 
| 
 | 
   647             # Perform Mann-Whitney U test
 | 
| 
 | 
   648             _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data)
 | 
| 
 | 
   649     
 | 
| 
 | 
   650     # Calculate means and standard deviations
 | 
| 
 | 
   651     mean1 = np.nanmean(dataset1Data)
 | 
| 
 | 
   652     mean2 = np.nanmean(dataset2Data)
 | 
| 
 | 
   653     std1 = np.nanstd(dataset1Data, ddof=1)
 | 
| 
 | 
   654     std2 = np.nanstd(dataset2Data, ddof=1)
 | 
| 
 | 
   655     
 | 
| 
 | 
   656     n1 = len(dataset1Data)
 | 
| 
 | 
   657     n2 = len(dataset2Data)
 | 
| 
 | 
   658     
 | 
| 
 | 
   659     # Calculate Z-score
 | 
| 
 | 
   660     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2))
 | 
| 
 | 
   661     
 | 
| 
 | 
   662     return p_value, z_score
 | 
| 
 | 
   663 
 | 
| 
 | 
   664 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]:
 | 
| 
 | 
   665     #TODO: the following code still suffers from "dumbvarnames-osis"
 | 
| 
 | 
   666     comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {}
 | 
| 
 | 
   667     count   = 0
 | 
| 
 | 
   668     max_z_score = 0
 | 
| 
 | 
   669     for l1, l2 in zip(dataset1Data, dataset2Data):
 | 
| 
 | 
   670         reactId = ids[count]
 | 
| 
 | 
   671         count += 1
 | 
| 
 | 
   672         if not reactId: continue # we skip ids that have already been processed
 | 
| 
 | 
   673 
 | 
| 
 | 
   674         try: 
 | 
| 
 | 
   675             p_value, z_score = computePValue(l1, l2)
 | 
| 
 | 
   676             avg1 = sum(l1) / len(l1)
 | 
| 
 | 
   677             avg2 = sum(l2) / len(l2)
 | 
| 
 | 
   678             f_c = fold_change(avg1, avg2)
 | 
| 
 | 
   679             if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score)
 | 
| 
 | 
   680             
 | 
| 
 | 
   681             comparisonResult[reactId] = [float(p_value), f_c, z_score, avg1, avg2]
 | 
| 
 | 
   682         except (TypeError, ZeroDivisionError): continue
 | 
| 
 | 
   683 
 | 
| 
 | 
   684     # Apply multiple testing correction if set by the user
 | 
| 
 | 
   685     if ARGS.adjusted:
 | 
| 
 | 
   686         
 | 
| 
 | 
   687         # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN
 | 
| 
 | 
   688         validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])]
 | 
| 
 | 
   689 
 | 
| 
 | 
   690         if not validPValues:
 | 
| 
 | 
   691             return comparisonResult, max_z_score
 | 
| 
 | 
   692         
 | 
| 
 | 
   693         # Unpack the valid p-values
 | 
| 
 | 
   694         reactIds, pValues = zip(*validPValues)
 | 
| 
 | 
   695         # Adjust the p-values using the Benjamini-Hochberg method
 | 
| 
 | 
   696         adjustedPValues = st.false_discovery_control(pValues)
 | 
| 
 | 
   697         # Update the comparisonResult dictionary with the adjusted p-values
 | 
| 
 | 
   698         for reactId , adjustedPValue in zip(reactIds, adjustedPValues):
 | 
| 
 | 
   699             comparisonResult[reactId][0] = adjustedPValue
 | 
| 
 | 
   700     
 | 
| 
 | 
   701     return comparisonResult, max_z_score
 | 
| 
 | 
   702 
 | 
| 
 | 
   703 def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]:
 | 
| 
 | 
   704     """
 | 
| 
 | 
   705     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the
 | 
| 
 | 
   706     provided metabolic map.
 | 
| 
 | 
   707 
 | 
| 
 | 
   708     Args:
 | 
| 
 | 
   709         class_pat : the clustered data.
 | 
| 
 | 
   710         ids : ids for data association.
 | 
| 
 | 
   711         
 | 
| 
 | 
   712 
 | 
| 
 | 
   713     Returns:
 | 
| 
 | 
   714         List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score.
 | 
| 
 | 
   715 
 | 
| 
 | 
   716     Raises:
 | 
| 
 | 
   717         sys.exit : if there are less than 2 classes for comparison
 | 
| 
 | 
   718 
 | 
| 
 | 
   719     """
 | 
| 
 | 
   720     class_pat = { k.strip() : v for k, v in class_pat.items() }
 | 
| 
 | 
   721     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error)
 | 
| 
 | 
   722     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n')
 | 
| 
 | 
   723 
 | 
| 
 | 
   724     enrichment_results = []
 | 
| 
 | 
   725 
 | 
| 
 | 
   726     
 | 
| 
 | 
   727     if ARGS.comparison == "manyvsmany":
 | 
| 
 | 
   728         for i, j in it.combinations(class_pat.keys(), 2):
 | 
| 
 | 
   729             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids)
 | 
| 
 | 
   730             enrichment_results.append((i, j, comparisonDict, max_z_score))
 | 
| 
 | 
   731     
 | 
| 
 | 
   732     elif ARGS.comparison == "onevsrest":
 | 
| 
 | 
   733         for single_cluster in class_pat.keys():
 | 
| 
 | 
   734             rest = [item for k, v in class_pat.items() if k != single_cluster for item in v]
 | 
| 
 | 
   735 
 | 
| 
 | 
   736             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids)
 | 
| 
 | 
   737             enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score))
 | 
| 
 | 
   738     
 | 
| 
 | 
   739     #elif ARGS.comparison == "onevsmany":
 | 
| 
 | 
   740     #    controlItems = class_pat.get(ARGS.control)
 | 
| 
 | 
   741     #    for otherDataset in class_pat.keys():
 | 
| 
 | 
   742     #        if otherDataset == ARGS.control:
 | 
| 
 | 
   743     #            continue
 | 
| 
 | 
   744     #        comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids)
 | 
| 
 | 
   745     #        enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score))
 | 
| 
 | 
   746     elif ARGS.comparison == "onevsmany":
 | 
| 
 | 
   747         controlItems = class_pat.get(ARGS.control)
 | 
| 
 | 
   748         for otherDataset in class_pat.keys():
 | 
| 
 | 
   749             if otherDataset == ARGS.control:
 | 
| 
 | 
   750                 continue
 | 
| 
 | 
   751             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids)
 | 
| 
 | 
   752             enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score))
 | 
| 
 | 
   753 
 | 
| 
 | 
   754     return enrichment_results
 | 
| 
 | 
   755 
 | 
| 
 | 
   756 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None:
 | 
| 
 | 
   757     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG)
 | 
| 
 | 
   758     utils.writeSvg(svgFilePath, core_map)
 | 
| 
 | 
   759 
 | 
| 
 | 
   760     if ARGS.generate_pdf:
 | 
| 
 | 
   761         pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG)
 | 
| 
 | 
   762         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF)
 | 
| 
 | 
   763         convert_to_pdf(svgFilePath, pngPath, pdfPath)
 | 
| 
 | 
   764 
 | 
| 
 | 
   765     if not ARGS.generate_svg:
 | 
| 
 | 
   766         os.remove(svgFilePath.show())
 | 
| 
 | 
   767 
 | 
| 
 | 
   768 ClassPat = Dict[str, List[List[float]]]
 | 
| 
 | 
   769 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]:
 | 
| 
 | 
   770     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate,
 | 
| 
 | 
   771     # for the sake of everyone's sanity.
 | 
| 
 | 
   772     class_pat :ClassPat = {}
 | 
| 
 | 
   773     if ARGS.option == 'datasets':
 | 
| 
 | 
   774         num = 1 #TODO: the dataset naming function could be a generator
 | 
| 
 | 
   775         for path, name in zip(datasetsPaths, names):
 | 
| 
 | 
   776             name = name_dataset(name, num)
 | 
| 
 | 
   777             resolve_rules_float, ids = getDatasetValues(path, name)
 | 
| 
 | 
   778             if resolve_rules_float != None:
 | 
| 
 | 
   779                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values())))
 | 
| 
 | 
   780         
 | 
| 
 | 
   781             num += 1
 | 
| 
 | 
   782     
 | 
| 
 | 
   783     elif ARGS.option == "dataset_class":
 | 
| 
 | 
   784         classes = read_dataset(classPath, "class")
 | 
| 
 | 
   785         classes = classes.astype(str)
 | 
| 
 | 
   786         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)")
 | 
| 
 | 
   787         #check if classes have match on ids
 | 
| 
 | 
   788         if not all(classes.iloc[:, 0].isin(ids)):
 | 
| 
 | 
   789             utils.logWarning(
 | 
| 
 | 
   790             "No match between classes and sample IDs", ARGS.out_log)
 | 
| 
 | 
   791         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float)
 | 
| 
 | 
   792     
 | 
| 
 | 
   793     return ids, class_pat
 | 
| 
 | 
   794     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs)
 | 
| 
 | 
   795 
 | 
| 
 | 
   796 #TODO: create these damn args as FilePath objects
 | 
| 
 | 
   797 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]:
 | 
| 
 | 
   798     """
 | 
| 
 | 
   799     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs.
 | 
| 
 | 
   800 
 | 
| 
 | 
   801     Args:
 | 
| 
 | 
   802         datasetPath : path to the dataset
 | 
| 
 | 
   803         datasetName (str): dataset name, used in error reporting
 | 
| 
 | 
   804 
 | 
| 
 | 
   805     Returns:
 | 
| 
 | 
   806         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset
 | 
| 
 | 
   807     """
 | 
| 
 | 
   808     dataset = read_dataset(datasetPath, datasetName)
 | 
| 
 | 
   809     
 | 
| 
 | 
   810     # Ensure the first column is treated as the reaction name
 | 
| 
 | 
   811     dataset = dataset.set_index(dataset.columns[0])
 | 
| 
 | 
   812 
 | 
| 
 | 
   813     # Check if required reactions exist in the dataset
 | 
| 
 | 
   814     required_reactions = ['EX_lac__L_e', 'EX_glc__D_e', 'EX_gln__L_e', 'EX_glu__L_e']
 | 
| 
 | 
   815     missing_reactions = [reaction for reaction in required_reactions if reaction not in dataset.index]
 | 
| 
 | 
   816 
 | 
| 
 | 
   817     if missing_reactions:
 | 
| 
 | 
   818         sys.exit(f'Execution aborted: Missing required reactions {missing_reactions} in {datasetName}\n')
 | 
| 
 | 
   819 
 | 
| 
 | 
   820     # Calculate new rows using safe division
 | 
| 
 | 
   821     lact_glc = np.divide(
 | 
| 
 | 
   822         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None),
 | 
| 
 | 
   823         np.clip(dataset.loc['EX_glc__D_e'].to_numpy(), a_min=None, a_max=0),
 | 
| 
 | 
   824         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan),  # Prepara un array con NaN come output di default
 | 
| 
 | 
   825         where=dataset.loc['EX_glc__D_e'].to_numpy() != 0  # Condizione per evitare la divisione per zero
 | 
| 
 | 
   826     )
 | 
| 
 | 
   827     lact_gln = np.divide(
 | 
| 
 | 
   828         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None),
 | 
| 
 | 
   829         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0),
 | 
| 
 | 
   830         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), 
 | 
| 
 | 
   831         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0
 | 
| 
 | 
   832     )
 | 
| 
 | 
   833     lact_o2 = np.divide(
 | 
| 
 | 
   834         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None),
 | 
| 
 | 
   835         np.clip(dataset.loc['EX_o2_e'].to_numpy(), a_min=None, a_max=0),
 | 
| 
 | 
   836         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), 
 | 
| 
 | 
   837         where=dataset.loc['EX_o2_e'].to_numpy() != 0
 | 
| 
 | 
   838     )
 | 
| 
 | 
   839     glu_gln = np.divide(
 | 
| 
 | 
   840         dataset.loc['EX_glu__L_e'].to_numpy(),
 | 
| 
 | 
   841         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), 
 | 
| 
 | 
   842         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan),
 | 
| 
 | 
   843         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0
 | 
| 
 | 
   844     )
 | 
| 
 | 
   845 
 | 
| 
 | 
   846 
 | 
| 
 | 
   847     values = {'lact_glc': lact_glc, 'lact_gln': lact_gln, 'lact_o2': lact_o2, 'glu_gln': glu_gln}
 | 
| 
 | 
   848    
 | 
| 
 | 
   849     # Sostituzione di inf e NaN con 0 se necessario
 | 
| 
 | 
   850     for key in values:
 | 
| 
 | 
   851         values[key] = np.nan_to_num(values[key], nan=0.0, posinf=0.0, neginf=0.0)
 | 
| 
 | 
   852 
 | 
| 
 | 
   853     # Creazione delle nuove righe da aggiungere al dataset
 | 
| 
 | 
   854     new_rows = pd.DataFrame({
 | 
| 
 | 
   855         dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'],
 | 
| 
 | 
   856         **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] 
 | 
| 
 | 
   857            for i, col in enumerate(dataset.columns)}
 | 
| 
 | 
   858     })
 | 
| 
 | 
   859 
 | 
| 
 | 
   860     #print(new_rows)
 | 
| 
 | 
   861 
 | 
| 
 | 
   862     # Ritorna il dataset originale con le nuove righe
 | 
| 
 | 
   863     dataset.reset_index(inplace=True)
 | 
| 
 | 
   864     dataset = pd.concat([dataset, new_rows], ignore_index=True)
 | 
| 
 | 
   865 
 | 
| 
 | 
   866     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str))
 | 
| 
 | 
   867 
 | 
| 
 | 
   868     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list")
 | 
| 
 | 
   869     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs
 | 
| 
 | 
   870 
 | 
| 
 | 
   871 def rgb_to_hex(rgb):
 | 
| 
 | 
   872     """
 | 
| 
 | 
   873     Convert RGB values (0-1 range) to hexadecimal color format.
 | 
| 
 | 
   874 
 | 
| 
 | 
   875     Args:
 | 
| 
 | 
   876         rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]).
 | 
| 
 | 
   877 
 | 
| 
 | 
   878     Returns:
 | 
| 
 | 
   879         str: The color in hexadecimal format (e.g., '#ff0000' for red).
 | 
| 
 | 
   880     """
 | 
| 
 | 
   881     # Convert RGB values (0-1 range) to hexadecimal format
 | 
| 
 | 
   882     rgb = (np.array(rgb) * 255).astype(int)
 | 
| 
 | 
   883     return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])
 | 
| 
 | 
   884 
 | 
| 
 | 
   885 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"):
 | 
| 
 | 
   886     """
 | 
| 
 | 
   887     Create and save an image of the colormap showing the gradient and its range.
 | 
| 
 | 
   888 
 | 
| 
 | 
   889     Args:
 | 
| 
 | 
   890         min_value (float): The minimum value of the colormap range.
 | 
| 
 | 
   891         max_value (float): The maximum value of the colormap range.
 | 
| 
 | 
   892         filename (str): The filename for saving the image.
 | 
| 
 | 
   893     """
 | 
| 
 | 
   894 
 | 
| 
 | 
   895     # Create a colormap using matplotlib
 | 
| 
 | 
   896     cmap = plt.get_cmap(colorMap)
 | 
| 
 | 
   897 
 | 
| 
 | 
   898     # Create a figure and axis
 | 
| 
 | 
   899     fig, ax = plt.subplots(figsize=(6, 1))
 | 
| 
 | 
   900     fig.subplots_adjust(bottom=0.5)
 | 
| 
 | 
   901 
 | 
| 
 | 
   902     # Create a gradient image
 | 
| 
 | 
   903     gradient = np.linspace(0, 1, 256)
 | 
| 
 | 
   904     gradient = np.vstack((gradient, gradient))
 | 
| 
 | 
   905 
 | 
| 
 | 
   906     # Add min and max value annotations
 | 
| 
 | 
   907     ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black')
 | 
| 
 | 
   908     ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black')
 | 
| 
 | 
   909 
 | 
| 
 | 
   910 
 | 
| 
 | 
   911     # Display the gradient image
 | 
| 
 | 
   912     ax.imshow(gradient, aspect='auto', cmap=cmap)
 | 
| 
 | 
   913     ax.set_axis_off()
 | 
| 
 | 
   914 
 | 
| 
 | 
   915     # Save the image
 | 
| 
 | 
   916     plt.savefig(path.show(), bbox_inches='tight', pad_inches=0)
 | 
| 
 | 
   917     plt.close()
 | 
| 
 | 
   918     pass
 | 
| 
 | 
   919 
 | 
| 
 | 
   920 def min_nonzero_abs(arr):
 | 
| 
 | 
   921     # Flatten the array and filter out zeros, then find the minimum of the remaining values
 | 
| 
 | 
   922     non_zero_elements = np.abs(arr)[np.abs(arr) > 0]
 | 
| 
 | 
   923     return np.min(non_zero_elements) if non_zero_elements.size > 0 else None
 | 
| 
 | 
   924 
 | 
| 
 | 
   925 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None:
 | 
| 
 | 
   926     """
 | 
| 
 | 
   927     Compute and visualize the metabolic map based on mean and median of the input fluxes.
 | 
| 
 | 
   928     The fluxes are normalised across classes/datasets and visualised using the given colormap.
 | 
| 
 | 
   929 
 | 
| 
 | 
   930     Args:
 | 
| 
 | 
   931         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
   932         class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values.
 | 
| 
 | 
   933         ids (List[str]): A list of reaction IDs to be used for coloring arrows.
 | 
| 
 | 
   934     
 | 
| 
 | 
   935     Returns:
 | 
| 
 | 
   936         None
 | 
| 
 | 
   937     """
 | 
| 
 | 
   938     # Create copies only if they are needed
 | 
| 
 | 
   939     metabMap_mean = copy.deepcopy(metabMap)
 | 
| 
 | 
   940     metabMap_median = copy.deepcopy(metabMap)
 | 
| 
 | 
   941 
 | 
| 
 | 
   942     # Compute medians and means
 | 
| 
 | 
   943     medians = {key: np.round(np.nanmedian(np.array(value), axis=1), 6) for key, value in class_pat.items()}
 | 
| 
 | 
   944     means = {key: np.round(np.nanmean(np.array(value), axis=1),6) for key, value in class_pat.items()}
 | 
| 
 | 
   945 
 | 
| 
 | 
   946     # Normalize medians and means
 | 
| 
 | 
   947     max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values())
 | 
| 
 | 
   948     max_flux_means = max(np.max(np.abs(arr)) for arr in means.values())
 | 
| 
 | 
   949 
 | 
| 
 | 
   950     min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values())
 | 
| 
 | 
   951     min_flux_means = min(min_nonzero_abs(arr) for arr in means.values())
 | 
| 
 | 
   952 
 | 
| 
 | 
   953     medians = {key: median/max_flux_medians for key, median in medians.items()}
 | 
| 
 | 
   954     means = {key: mean/max_flux_means for key, mean in means.items()}
 | 
| 
 | 
   955 
 | 
| 
 | 
   956     save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap)
 | 
| 
 | 
   957     save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap)
 | 
| 
 | 
   958 
 | 
| 
 | 
   959     cmap = plt.get_cmap(colormap)
 | 
| 
 | 
   960 
 | 
| 
 | 
   961     min_width = 2.0  # Minimum arrow width
 | 
| 
 | 
   962     max_width = 15.0  # Maximum arrow width
 | 
| 
 | 
   963 
 | 
| 
 | 
   964     for key in class_pat:
 | 
| 
 | 
   965         # Create color mappings for median and mean
 | 
| 
 | 
   966         colors_median = {
 | 
| 
 | 
   967             rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe'  #grey blocked
 | 
| 
 | 
   968             for i, rxn_id in enumerate(ids)
 | 
| 
 | 
   969         }
 | 
| 
 | 
   970 
 | 
| 
 | 
   971         colors_mean = {
 | 
| 
 | 
   972             rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe'  #grey blocked
 | 
| 
 | 
   973             for i, rxn_id in enumerate(ids)
 | 
| 
 | 
   974         }
 | 
| 
 | 
   975 
 | 
| 
 | 
   976         for i, rxn_id in enumerate(ids):
 | 
| 
 | 
   977             # Calculate arrow width for median
 | 
| 
 | 
   978             width_median = np.interp(abs(medians[key][i]), [0, 1], [min_width, max_width])
 | 
| 
 | 
   979             isNegative = medians[key][i] < 0
 | 
| 
 | 
   980             apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative, width_median)
 | 
| 
 | 
   981 
 | 
| 
 | 
   982             # Calculate arrow width for mean
 | 
| 
 | 
   983             width_mean = np.interp(abs(means[key][i]), [0, 1], [min_width, max_width])
 | 
| 
 | 
   984             isNegative = means[key][i] < 0
 | 
| 
 | 
   985             apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative, width_mean)
 | 
| 
 | 
   986 
 | 
| 
 | 
   987         # Save and convert the SVG files
 | 
| 
 | 
   988         save_and_convert(metabMap_mean, "mean", key)
 | 
| 
 | 
   989         save_and_convert(metabMap_median, "median", key)
 | 
| 
 | 
   990 
 | 
| 
 | 
   991 def apply_arrow(metabMap, rxn_id, color, isNegative, width=5):
 | 
| 
 | 
   992     """
 | 
| 
 | 
   993     Apply an arrow to a specific reaction in the metabolic map with a given color.
 | 
| 
 | 
   994 
 | 
| 
 | 
   995     Args:
 | 
| 
 | 
   996         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
   997         rxn_id (str): The ID of the reaction to which the arrow will be applied.
 | 
| 
 | 
   998         color (str): The color of the arrow in hexadecimal format.
 | 
| 
 | 
   999         isNegative (bool): A boolean indicating if the arrow represents a negative value.
 | 
| 
 | 
  1000         width (int): The width of the arrow.
 | 
| 
 | 
  1001 
 | 
| 
 | 
  1002     Returns:
 | 
| 
 | 
  1003         None
 | 
| 
 | 
  1004     """
 | 
| 
 | 
  1005     arrow = Arrow(width=width, col=color)
 | 
| 
 | 
  1006     arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative)
 | 
| 
 | 
  1007     pass
 | 
| 
 | 
  1008 
 | 
| 
 | 
  1009 def save_and_convert(metabMap, map_type, key):
 | 
| 
 | 
  1010     """
 | 
| 
 | 
  1011     Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats.
 | 
| 
 | 
  1012 
 | 
| 
 | 
  1013     Args:
 | 
| 
 | 
  1014         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
  1015         map_type (str): The type of map ('mean' or 'median').
 | 
| 
 | 
  1016         key (str): The key identifying the specific map.
 | 
| 
 | 
  1017 
 | 
| 
 | 
  1018     Returns:
 | 
| 
 | 
  1019         None
 | 
| 
 | 
  1020     """
 | 
| 
 | 
  1021     svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path)
 | 
| 
 | 
  1022     utils.writeSvg(svgFilePath, metabMap)
 | 
| 
 | 
  1023     if ARGS.generate_pdf:
 | 
| 
 | 
  1024         pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path)
 | 
| 
 | 
  1025         pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path)
 | 
| 
 | 
  1026         convert_to_pdf(svgFilePath, pngPath, pdfPath)
 | 
| 
 | 
  1027     if not ARGS.generate_svg:
 | 
| 
 | 
  1028         os.remove(svgFilePath.show())
 | 
| 
 | 
  1029 
 | 
| 
 | 
  1030 ############################ MAIN #############################################
 | 
| 
 | 
  1031 def main(args:List[str] = None) -> None:
 | 
| 
 | 
  1032     """
 | 
| 
 | 
  1033     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
  1034 
 | 
| 
 | 
  1035     Returns:
 | 
| 
 | 
  1036         None
 | 
| 
 | 
  1037     
 | 
| 
 | 
  1038     Raises:
 | 
| 
 | 
  1039         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError)
 | 
| 
 | 
  1040     """
 | 
| 
 | 
  1041 
 | 
| 
 | 
  1042     global ARGS
 | 
| 
 | 
  1043     ARGS = process_args(args)
 | 
| 
 | 
  1044 
 | 
| 
 | 
  1045     if ARGS.custom_map == 'None':
 | 
| 
 | 
  1046         ARGS.custom_map = None
 | 
| 
 | 
  1047 
 | 
| 
 | 
  1048     if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path)
 | 
| 
 | 
  1049     
 | 
| 
 | 
  1050     core_map :ET.ElementTree = ARGS.choice_map.getMap(
 | 
| 
 | 
  1051         ARGS.tool_dir,
 | 
| 
 | 
  1052         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None)
 | 
| 
 | 
  1053     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given.
 | 
| 
 | 
  1054     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner
 | 
| 
 | 
  1055     # solution can be derived from my comment in FilePath.fromStrPath
 | 
| 
 | 
  1056 
 | 
| 
 | 
  1057     ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes)
 | 
| 
 | 
  1058 
 | 
| 
 | 
  1059     if(ARGS.choice_map == utils.Model.HMRcore):
 | 
| 
 | 
  1060         temp_map = utils.Model.HMRcore_no_legend
 | 
| 
 | 
  1061         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1062     elif(ARGS.choice_map == utils.Model.ENGRO2):
 | 
| 
 | 
  1063         temp_map = utils.Model.ENGRO2_no_legend
 | 
| 
 | 
  1064         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1065     else:
 | 
| 
 | 
  1066         computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1067 
 | 
| 
 | 
  1068 
 | 
| 
 | 
  1069     enrichment_results = computeEnrichment(class_pat, ids)
 | 
| 
 | 
  1070     for i, j, comparisonDict, max_z_score in enrichment_results:
 | 
| 
 | 
  1071         map_copy = copy.deepcopy(core_map)
 | 
| 
 | 
  1072         temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j)
 | 
| 
 | 
  1073         createOutputMaps(i, j, map_copy)
 | 
| 
 | 
  1074     
 | 
| 
 | 
  1075     if not ERRORS: return
 | 
| 
 | 
  1076     utils.logWarning(
 | 
| 
 | 
  1077         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}",
 | 
| 
 | 
  1078         ARGS.out_log)
 | 
| 
 | 
  1079     
 | 
| 
 | 
  1080     print('Execution succeded')
 | 
| 
 | 
  1081 
 | 
| 
 | 
  1082 ###############################################################################
 | 
| 
 | 
  1083 if __name__ == "__main__":
 | 
| 
 | 
  1084     main()
 | 
| 
 | 
  1085 
 |