|
540
|
1 """
|
|
|
2 Scripts to generate a tabular file of a metabolic model (built-in or custom).
|
|
|
3
|
|
|
4 This script loads a COBRA model (built-in or custom), optionally applies
|
|
|
5 medium and gene nomenclature settings, derives reaction-related metadata
|
|
|
6 (GPR rules, formulas, bounds, objective coefficients, medium membership,
|
|
|
7 and compartments for ENGRO2), and writes a tabular summary.
|
|
|
8 """
|
|
|
9
|
|
|
10 import os
|
|
|
11 import csv
|
|
|
12 import cobra
|
|
|
13 import argparse
|
|
|
14 import pandas as pd
|
|
542
|
15 try:
|
|
|
16 from .utils import general_utils as utils
|
|
|
17 from .utils import model_utils as modelUtils
|
|
|
18 except:
|
|
|
19 import utils.general_utils as utils
|
|
|
20 import utils.model_utils as modelUtils
|
|
540
|
21 from typing import Optional, Tuple, List
|
|
|
22 import logging
|
|
|
23 from pathlib import Path
|
|
|
24
|
|
|
25
|
|
|
26 ARGS : argparse.Namespace
|
|
|
27 def process_args(args: List[str] = None) -> argparse.Namespace:
|
|
|
28 """
|
|
|
29 Parse command-line arguments.
|
|
|
30 """
|
|
|
31
|
|
|
32 parser = argparse.ArgumentParser(
|
|
|
33 usage="%(prog)s [options]",
|
|
|
34 description="Generate custom data from a given model"
|
|
|
35 )
|
|
|
36
|
|
|
37 parser.add_argument("--out_log", type=str, required=True,
|
|
|
38 help="Output log file")
|
|
|
39
|
|
|
40 parser.add_argument("--model", type=str,
|
|
|
41 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
|
|
|
42 parser.add_argument("--input", type=str,
|
|
|
43 help="Custom model file (JSON, XML, MAT, YAML)")
|
|
|
44 parser.add_argument("--name", nargs='*', required=True,
|
|
|
45 help="Model name (default or custom)")
|
|
|
46
|
|
542
|
47 parser.add_argument("--medium_selector", type=str, default="Default",
|
|
540
|
48 help="Medium selection option")
|
|
|
49
|
|
|
50 parser.add_argument("--gene_format", type=str, default="Default",
|
|
|
51 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
|
|
|
52
|
|
|
53 parser.add_argument("--out_tabular", type=str,
|
|
|
54 help="Output file for the merged dataset (CSV or XLSX)")
|
|
|
55
|
|
542
|
56 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(os.path.abspath(__file__)),
|
|
|
57 help="Tool directory (default: auto-detected package location)")
|
|
540
|
58
|
|
|
59
|
|
|
60 return parser.parse_args(args)
|
|
|
61
|
|
|
62 ################################- INPUT DATA LOADING -################################
|
|
|
63 def detect_file_format(file_path: str) -> utils.FileFormat:
|
|
|
64 """
|
|
|
65 Detect file format by examining file content and extension.
|
|
|
66 Handles Galaxy .dat files by looking at content.
|
|
|
67 """
|
|
|
68 try:
|
|
|
69 with open(file_path, 'r') as f:
|
|
|
70 first_lines = ''.join([f.readline() for _ in range(5)])
|
|
|
71
|
|
|
72 # Check for XML (SBML)
|
|
|
73 if '<?xml' in first_lines or '<sbml' in first_lines:
|
|
|
74 return utils.FileFormat.XML
|
|
|
75
|
|
|
76 # Check for JSON
|
|
|
77 if first_lines.strip().startswith('{'):
|
|
|
78 return utils.FileFormat.JSON
|
|
|
79
|
|
|
80 # Check for YAML
|
|
|
81 if any(line.strip().endswith(':') for line in first_lines.split('\n')[:3]):
|
|
|
82 return utils.FileFormat.YML
|
|
|
83
|
|
|
84 except:
|
|
|
85 pass
|
|
|
86
|
|
|
87 # Fall back to extension-based detection
|
|
|
88 if file_path.endswith('.xml') or file_path.endswith('.sbml'):
|
|
|
89 return utils.FileFormat.XML
|
|
|
90 elif file_path.endswith('.json'):
|
|
|
91 return utils.FileFormat.JSON
|
|
|
92 elif file_path.endswith('.mat'):
|
|
|
93 return utils.FileFormat.MAT
|
|
|
94 elif file_path.endswith('.yml') or file_path.endswith('.yaml'):
|
|
|
95 return utils.FileFormat.YML
|
|
|
96
|
|
|
97 # Default to XML for unknown extensions
|
|
|
98 return utils.FileFormat.XML
|
|
|
99
|
|
|
100 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
|
|
|
101 """
|
|
|
102 Loads a custom model from a file, either in JSON, XML, MAT, or YML format.
|
|
|
103
|
|
|
104 Args:
|
|
|
105 file_path : The path to the file containing the custom model.
|
|
|
106 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
|
|
|
107
|
|
|
108 Raises:
|
|
|
109 DataErr : if the file is in an invalid format or cannot be opened for whatever reason.
|
|
|
110
|
|
|
111 Returns:
|
|
|
112 cobra.Model : the model, if successfully opened.
|
|
|
113 """
|
|
|
114 ext = ext if ext else file_path.ext
|
|
|
115 try:
|
|
|
116 if ext is utils.FileFormat.XML:
|
|
|
117 return cobra.io.read_sbml_model(file_path.show())
|
|
|
118
|
|
|
119 if ext is utils.FileFormat.JSON:
|
|
|
120 return cobra.io.load_json_model(file_path.show())
|
|
|
121
|
|
|
122 if ext is utils.FileFormat.MAT:
|
|
|
123 return cobra.io.load_matlab_model(file_path.show())
|
|
|
124
|
|
|
125 if ext is utils.FileFormat.YML:
|
|
|
126 return cobra.io.load_yaml_model(file_path.show())
|
|
|
127
|
|
|
128 except Exception as e: raise utils.DataErr(file_path, e.__str__())
|
|
|
129 raise utils.DataErr(
|
|
|
130 file_path,
|
|
|
131 f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported."
|
|
|
132 )
|
|
|
133
|
|
|
134
|
|
|
135 ###############################- FILE SAVING -################################
|
|
|
136 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
|
|
|
137 """
|
|
|
138 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
|
|
|
139
|
|
|
140 Args:
|
|
|
141 data : the data to be written to the file.
|
|
|
142 file_path : the path to the .csv file.
|
|
|
143 fieldNames : the names of the fields (columns) in the .csv file.
|
|
|
144
|
|
|
145 Returns:
|
|
|
146 None
|
|
|
147 """
|
|
|
148 with open(file_path.show(), 'w', newline='') as csvfile:
|
|
|
149 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
|
|
|
150 writer.writeheader()
|
|
|
151
|
|
|
152 for key, value in data.items():
|
|
|
153 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
|
154
|
|
|
155 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
|
|
|
156 """
|
|
|
157 Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
|
|
|
158
|
|
|
159 Args:
|
|
|
160 data : the data to be written to the file.
|
|
|
161 file_path : the path to the .csv file.
|
|
|
162 fieldNames : the names of the fields (columns) in the .csv file.
|
|
|
163
|
|
|
164 Returns:
|
|
|
165 None
|
|
|
166 """
|
|
|
167 with open(file_path, 'w', newline='') as csvfile:
|
|
|
168 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
|
|
|
169 writer.writeheader()
|
|
|
170
|
|
|
171 for key, value in data.items():
|
|
|
172 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
|
173
|
|
|
174 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
|
|
|
175 """
|
|
|
176 Save a pandas DataFrame as a tab-separated file, creating directories as needed.
|
|
|
177
|
|
|
178 Args:
|
|
|
179 df: The DataFrame to write.
|
|
|
180 path: Destination file path (will be written as TSV).
|
|
|
181
|
|
|
182 Raises:
|
|
|
183 DataErr: If writing the output fails for any reason.
|
|
|
184
|
|
|
185 Returns:
|
|
|
186 None
|
|
|
187 """
|
|
|
188 try:
|
|
|
189 os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
|
|
|
190 df.to_csv(path, sep="\t", index=False)
|
|
|
191 except Exception as e:
|
|
|
192 raise utils.DataErr(path, f"failed writing tabular output: {e}")
|
|
|
193
|
|
|
194 def is_placeholder(gid) -> bool:
|
|
|
195 """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty)."""
|
|
|
196 if gid is None:
|
|
|
197 return True
|
|
|
198 s = str(gid).strip().lower()
|
|
|
199 return s in {"0", "", "na", "nan"} # lowercase for simple matching
|
|
|
200
|
|
|
201 def sample_valid_gene_ids(genes, limit=10):
|
|
|
202 """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON)."""
|
|
|
203 out = []
|
|
|
204 for g in genes:
|
|
|
205 gid = getattr(g, "id", getattr(g, "gene_id", g))
|
|
|
206 if not is_placeholder(gid):
|
|
|
207 out.append(str(gid))
|
|
|
208 if len(out) >= limit:
|
|
|
209 break
|
|
|
210 return out
|
|
|
211
|
|
|
212
|
|
|
213 ###############################- ENTRY POINT -################################
|
|
|
214 def main(args:List[str] = None) -> None:
|
|
|
215 """
|
|
|
216 Initialize and generate custom data based on the frontend input arguments.
|
|
|
217
|
|
|
218 Returns:
|
|
|
219 None
|
|
|
220 """
|
|
|
221 # Parse args from frontend (Galaxy XML)
|
|
|
222 global ARGS
|
|
|
223 ARGS = process_args(args)
|
|
|
224
|
|
|
225 # Convert name from list to string (handles names with spaces)
|
|
|
226 if isinstance(ARGS.name, list):
|
|
|
227 ARGS.name = ' '.join(ARGS.name)
|
|
|
228
|
|
|
229 if ARGS.input:
|
|
|
230 # Load a custom model from file with auto-detected format
|
|
|
231 detected_format = detect_file_format(ARGS.input)
|
|
|
232 model = load_custom_model(utils.FilePath.fromStrPath(ARGS.input), detected_format)
|
|
|
233 else:
|
|
|
234 # Load a built-in model
|
|
|
235 if not ARGS.model:
|
|
|
236 raise utils.ArgsErr("model", "either --model or --input must be provided", "None")
|
|
|
237
|
|
|
238 try:
|
|
|
239 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2']
|
|
|
240 except KeyError:
|
|
|
241 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
|
|
|
242
|
|
|
243 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
|
|
|
244 try:
|
|
|
245 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
|
|
|
246 except Exception as e:
|
|
|
247 # Wrap/normalize load errors as DataErr for consistency
|
|
|
248 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
|
|
|
249
|
|
|
250 # Determine final model name: explicit --name overrides, otherwise use the model id
|
|
|
251
|
|
|
252 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
|
|
|
253 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
|
|
|
254 #ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") medium.csv uses underscores now
|
|
|
255 medium = df_mediums[[ARGS.medium_selector]]
|
|
|
256 medium = medium[ARGS.medium_selector].to_dict()
|
|
|
257
|
|
|
258 # Reset all medium reactions lower bound to zero
|
|
|
259 for rxn_id, _ in model.medium.items():
|
|
|
260 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
|
|
|
261
|
|
|
262 # Apply selected medium uptake bounds (negative for uptake)
|
|
|
263 for reaction, value in medium.items():
|
|
|
264 if value is not None:
|
|
|
265 model.reactions.get_by_id(reaction).lower_bound = -float(value)
|
|
|
266
|
|
|
267 # Initialize translation_issues dictionary
|
|
|
268 translation_issues = {}
|
|
|
269
|
|
|
270 if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
|
|
|
271 logging.basicConfig(level=logging.INFO)
|
|
|
272 logger = logging.getLogger(__name__)
|
|
|
273
|
|
|
274 model, translation_issues = modelUtils.translate_model_genes(
|
|
|
275 model=model,
|
|
|
276 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
|
|
|
277 target_nomenclature=ARGS.gene_format,
|
|
|
278 source_nomenclature='HGNC_symbol',
|
|
|
279 logger=logger
|
|
|
280 )
|
|
|
281
|
|
|
282 if ARGS.input and ARGS.gene_format != "Default":
|
|
|
283 logging.basicConfig(level=logging.INFO)
|
|
|
284 logger = logging.getLogger(__name__)
|
|
|
285
|
|
|
286 # Take a small, clean sample of gene IDs (skipping placeholders like 0)
|
|
|
287 ids_sample = sample_valid_gene_ids(model.genes, limit=10)
|
|
|
288 if not ids_sample:
|
|
|
289 raise utils.DataErr(
|
|
|
290 "Custom_model",
|
|
|
291 "No valid gene IDs found (many may be placeholders like 0)."
|
|
|
292 )
|
|
|
293
|
|
|
294 # Detect source nomenclature on the sample
|
|
|
295 types = []
|
|
|
296 for gid in ids_sample:
|
|
|
297 try:
|
|
|
298 t = modelUtils.gene_type(gid, "Custom_model")
|
|
|
299 except Exception as e:
|
|
|
300 # Keep it simple: skip problematic IDs
|
|
|
301 logger.debug(f"gene_type failed for {gid}: {e}")
|
|
|
302 t = None
|
|
|
303 if t:
|
|
|
304 types.append(t)
|
|
|
305
|
|
|
306 if not types:
|
|
|
307 raise utils.DataErr(
|
|
|
308 "Custom_model",
|
|
|
309 "Could not detect a known gene nomenclature from the sample."
|
|
|
310 )
|
|
|
311
|
|
|
312 unique_types = set(types)
|
|
|
313 if len(unique_types) > 1:
|
|
|
314 raise utils.DataErr(
|
|
|
315 "Custom_model",
|
|
|
316 "Mixed or inconsistent gene nomenclatures detected. "
|
|
|
317 "Please unify them before converting."
|
|
|
318 )
|
|
|
319
|
|
|
320 source_nomenclature = types[0]
|
|
|
321
|
|
|
322 # Convert only if needed
|
|
|
323 if source_nomenclature != ARGS.gene_format:
|
|
|
324 model, translation_issues = modelUtils.translate_model_genes(
|
|
|
325 model=model,
|
|
|
326 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
|
|
|
327 target_nomenclature=ARGS.gene_format,
|
|
|
328 source_nomenclature=source_nomenclature,
|
|
|
329 logger=logger
|
|
|
330 )
|
|
|
331
|
|
|
332 # generate data using unified function
|
|
|
333 if not ARGS.out_tabular:
|
|
|
334 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
|
|
|
335
|
|
|
336 merged = modelUtils.export_model_to_tabular(
|
|
|
337 model=model,
|
|
|
338 output_path=ARGS.out_tabular,
|
|
|
339 translation_issues=translation_issues,
|
|
|
340 include_objective=True,
|
|
|
341 save_function=save_as_tabular_df
|
|
|
342 )
|
|
|
343 expected = ARGS.out_tabular
|
|
|
344
|
|
|
345 # verify output exists and non-empty
|
|
|
346 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
|
|
|
347 raise utils.DataErr(expected, "Output not created or empty")
|
|
|
348
|
|
|
349 print("Completed successfully")
|
|
|
350
|
|
|
351 if __name__ == '__main__':
|
|
|
352
|
|
|
353 main()
|