Mercurial > repos > bimib > cobraxy
comparison COBRAxy/ras_to_bounds.py @ 84:0446929eb06b draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 11:06:47 +0000 |
parents | be82f87848d0 |
children |
comparison
equal
deleted
inserted
replaced
83:bfb17674d13b | 84:0446929eb06b |
---|---|
52 parser.add_argument('-ir', '--input_ras', | 52 parser.add_argument('-ir', '--input_ras', |
53 type=str, | 53 type=str, |
54 required = False, | 54 required = False, |
55 help = 'input ras') | 55 help = 'input ras') |
56 | 56 |
57 parser.add_argument('-rn', '--names', | |
58 type=str, | |
59 help = 'ras class names') | |
60 | |
61 parser.add_argument('-rs', '--ras_selector', | 57 parser.add_argument('-rs', '--ras_selector', |
62 required = True, | 58 required = True, |
63 type=utils.Bool("using_RAS"), | 59 type=utils.Bool("using_RAS"), |
64 help = 'ras selector') | 60 help = 'ras selector') |
61 | |
62 parser.add_argument('-c', '--classes', | |
63 type = str, | |
64 required = False, | |
65 help = 'input classes') | |
65 | 66 |
66 parser.add_argument('-cc', '--cell_class', | 67 parser.add_argument('-cc', '--cell_class', |
67 type = str, | 68 type = str, |
68 help = 'output of cell class') | 69 help = 'output of cell class') |
69 | |
70 | 70 |
71 ARGS = parser.parse_args() | 71 ARGS = parser.parse_args() |
72 return ARGS | 72 return ARGS |
73 | 73 |
74 ########################### warning ########################################### | 74 ########################### warning ########################################### |
126 for reaction in rxns_ids: | 126 for reaction in rxns_ids: |
127 if reaction in ras_row.index: | 127 if reaction in ras_row.index: |
128 scaling_factor = ras_row[reaction] | 128 scaling_factor = ras_row[reaction] |
129 lower_bound=model.reactions.get_by_id(reaction).lower_bound | 129 lower_bound=model.reactions.get_by_id(reaction).lower_bound |
130 upper_bound=model.reactions.get_by_id(reaction).upper_bound | 130 upper_bound=model.reactions.get_by_id(reaction).upper_bound |
131 #warning("Reaction: "+reaction+" Lower Bound: "+str(lower_bound)+" Upper Bound: "+str(upper_bound)+" Scaling Factor: "+str(scaling_factor)) | |
132 valMax=float((upper_bound)*scaling_factor) | 131 valMax=float((upper_bound)*scaling_factor) |
133 valMin=float((lower_bound)*scaling_factor) | 132 valMin=float((lower_bound)*scaling_factor) |
134 if upper_bound!=0 and lower_bound==0: | 133 if upper_bound!=0 and lower_bound==0: |
135 model.reactions.get_by_id(reaction).upper_bound=valMax | 134 model.reactions.get_by_id(reaction).upper_bound=valMax |
136 if upper_bound==0 and lower_bound!=0: | 135 if upper_bound==0 and lower_bound!=0: |
189 rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) | 188 rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) |
190 rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) | 189 rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) |
191 | 190 |
192 if ras is not None: | 191 if ras is not None: |
193 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | 192 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) |
194 #for cellName, ras_row in ras.iterrows(): | |
195 #process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder) | |
196 else: | 193 else: |
197 model_new = model.copy() | 194 model_new = model.copy() |
198 apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) | 195 apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) |
199 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | 196 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) |
200 bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | 197 bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) |
219 | 216 |
220 ARGS.output_folder = 'ras_to_bounds/' | 217 ARGS.output_folder = 'ras_to_bounds/' |
221 | 218 |
222 if(ARGS.ras_selector == True): | 219 if(ARGS.ras_selector == True): |
223 ras_file_list = ARGS.input_ras.split(",") | 220 ras_file_list = ARGS.input_ras.split(",") |
224 ras_file_names = ARGS.names.split(",") | 221 if(len(ras_file_list)>1): |
225 ras_class_names = [] | 222 ras_class_names = [cls.strip() for cls in ARGS.classes.split(',')] |
226 for file in ras_file_names: | 223 else: |
227 ras_class_names.append(file.split(".")[0]) | 224 ras_class_names = ["placeHolder"] |
228 ras_list = [] | 225 ras_list = [] |
229 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | 226 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) |
230 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | 227 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): |
231 ras = read_dataset(ras_matrix, "ras dataset") | 228 ras = read_dataset(ras_matrix, "ras dataset") |
232 ras.replace("None", None, inplace=True) | 229 ras.replace("None", None, inplace=True) |
233 ras.set_index("Reactions", drop=True, inplace=True) | 230 ras.set_index("Reactions", drop=True, inplace=True) |
234 ras = ras.T | 231 ras = ras.T |
235 ras = ras.astype(float) | 232 ras = ras.astype(float) |
236 ras_list.append(ras) | 233 ras_list.append(ras) |
237 for patient_id in ras.index: | 234 for patient_id in ras.index: |
238 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | 235 class_assignments = class_assignments.append({"Patient_ID": patient_id, "Class": ras_class_name}, ignore_index=True) |
239 | |
240 | 236 |
241 # Concatenate all ras DataFrames into a single DataFrame | 237 # Concatenate all ras DataFrames into a single DataFrame |
242 ras_combined = pd.concat(ras_list, axis=0) | 238 ras_combined = pd.concat(ras_list, axis=1) |
243 # Normalize the RAS values by max RAS | 239 # Normalize the RAS values by max RAS |
244 ras_combined = ras_combined.div(ras_combined.max(axis=0)) | 240 ras_combined = ras_combined.div(ras_combined.max(axis=0)) |
245 ras_combined = ras_combined.fillna(0) | 241 ras_combined = ras_combined.fillna(0) |
246 | 242 |
247 | 243 |
263 medium = df_mediums[[ARGS.medium_selector]] | 259 medium = df_mediums[[ARGS.medium_selector]] |
264 medium = medium[ARGS.medium_selector].to_dict() | 260 medium = medium[ARGS.medium_selector].to_dict() |
265 | 261 |
266 if(ARGS.ras_selector == True): | 262 if(ARGS.ras_selector == True): |
267 generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) | 263 generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) |
268 class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | 264 if(len(ras_list)>1): |
265 class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | |
269 else: | 266 else: |
270 generate_bounds(model, medium, output_folder=ARGS.output_folder) | 267 generate_bounds(model, medium, output_folder=ARGS.output_folder) |
271 | 268 |
272 pass | 269 pass |
273 | 270 |