Mercurial > repos > bimib > cobraxy
comparison COBRAxy/flux_simulation_beta.py @ 473:05a80f8e0574 draft
Uploaded
| author | luca_milaz |
|---|---|
| date | Mon, 22 Sep 2025 15:32:47 +0000 |
| parents | 46901af8df7c |
| children | 6a88ae3f936f |
comparison
equal
deleted
inserted
replaced
| 472:00f2f3437ea3 | 473:05a80f8e0574 |
|---|---|
| 76 help='choose sampling algorithm') | 76 help='choose sampling algorithm') |
| 77 | 77 |
| 78 parser.add_argument('-th', '--thinning', | 78 parser.add_argument('-th', '--thinning', |
| 79 type=int, | 79 type=int, |
| 80 default=100, | 80 default=100, |
| 81 required=False, | 81 required=True, |
| 82 help='choose thinning') | 82 help='choose thinning') |
| 83 | 83 |
| 84 parser.add_argument('-ns', '--n_samples', | 84 parser.add_argument('-ns', '--n_samples', |
| 85 type=int, | 85 type=int, |
| 86 required=True, | 86 required=True, |
| 97 help='choose how many batches') | 97 help='choose how many batches') |
| 98 | 98 |
| 99 parser.add_argument('-opt', '--perc_opt', | 99 parser.add_argument('-opt', '--perc_opt', |
| 100 type=float, | 100 type=float, |
| 101 default=0.9, | 101 default=0.9, |
| 102 required=False, | 102 required=True, |
| 103 help='choose the fraction of optimality for FVA (0-1)') | 103 help='choose the fraction of optimality for FVA (0-1)') |
| 104 | 104 |
| 105 parser.add_argument('-ot', '--output_type', | 105 parser.add_argument('-ot', '--output_type', |
| 106 type=str, | 106 type=str, |
| 107 required=True, | 107 required=True, |
| 346 | 346 |
| 347 Returns: | 347 Returns: |
| 348 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 348 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. |
| 349 """ | 349 """ |
| 350 | 350 |
| 351 if ARGS.sampling_enabled == "true" and ARGS.n_samples > 0: | 351 if ARGS.sampling_enabled == "true": |
| 352 | 352 |
| 353 if ARGS.algorithm == 'OPTGP': | 353 if ARGS.algorithm == 'OPTGP': |
| 354 OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 354 OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) |
| 355 elif ARGS.algorithm == 'CBS': | 355 elif ARGS.algorithm == 'CBS': |
| 356 CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 356 CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) |
| 497 ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] | 497 ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] |
| 498 # optional analysis output types -> list or empty | 498 # optional analysis output types -> list or empty |
| 499 ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] | 499 ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] |
| 500 | 500 |
| 501 # Determine if sampling should be performed | 501 # Determine if sampling should be performed |
| 502 if ARGS.sampling_enabled == "true" and ARGS.n_samples > 0: | 502 if ARGS.sampling_enabled == "true": |
| 503 perform_sampling = True | 503 perform_sampling = True |
| 504 | 504 |
| 505 print("=== INPUT FILES ===") | 505 print("=== INPUT FILES ===") |
| 506 print(f"{ARGS.input_files}") | 506 print(f"{ARGS.input_files}") |
| 507 print(f"{ARGS.file_names}") | 507 print(f"{ARGS.file_names}") |
