Mercurial > repos > bimib > cobraxy
comparison COBRAxy/custom_data_generator.py @ 406:187cee1a00e2 draft
Uploaded
author | francesco_lapi |
---|---|
date | Mon, 08 Sep 2025 14:44:15 +0000 |
parents | 08f1ff359397 |
children |
comparison
equal
deleted
inserted
replaced
405:716b1a638fb5 | 406:187cee1a00e2 |
---|---|
8 import utils.rule_parsing as rulesUtils | 8 import utils.rule_parsing as rulesUtils |
9 from typing import Optional, Tuple, Union, List, Dict | 9 from typing import Optional, Tuple, Union, List, Dict |
10 import utils.reaction_parsing as reactionUtils | 10 import utils.reaction_parsing as reactionUtils |
11 | 11 |
12 ARGS : argparse.Namespace | 12 ARGS : argparse.Namespace |
13 def process_args(args: List[str] = None) -> argparse.Namespace: | 13 def process_args(args:List[str] = None) -> argparse.Namespace: |
14 """ | 14 """ |
15 Parse command-line arguments for CustomDataGenerator. | 15 Interfaces the script of a module with its frontend, making the user's choices for |
16 """ | 16 various parameters available as values in code. |
17 | 17 |
18 Args: | |
19 args : Always obtained (in file) from sys.argv | |
20 | |
21 Returns: | |
22 Namespace : An object containing the parsed arguments | |
23 """ | |
18 parser = argparse.ArgumentParser( | 24 parser = argparse.ArgumentParser( |
19 usage="%(prog)s [options]", | 25 usage = "%(prog)s [options]", |
20 description="Generate custom data from a given model" | 26 description = "generate custom data from a given model") |
21 ) | 27 |
22 | 28 parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log") |
23 parser.add_argument("--out_log", type=str, required=True, | 29 |
24 help="Output log file") | 30 parser.add_argument("-orules", "--out_rules", type = str, required = True, help = "Output rules") |
25 | 31 parser.add_argument("-orxns", "--out_reactions", type = str, required = True, help = "Output reactions") |
26 parser.add_argument("--model", type=str, | 32 parser.add_argument("-omedium", "--out_medium", type = str, required = True, help = "Output medium") |
27 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | 33 parser.add_argument("-obnds", "--out_bounds", type = str, required = True, help = "Output bounds") |
28 parser.add_argument("--input", type=str, | 34 |
29 help="Custom model file (JSON or XML)") | 35 parser.add_argument("-id", "--input", type = str, required = True, help = "Input model") |
30 parser.add_argument("--name", type=str, required=True, | 36 parser.add_argument("-mn", "--name", type = str, required = True, help = "Input model name") |
31 help="Model name (default or custom)") | 37 # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in |
32 | 38 parser.add_argument('-idop', '--output_path', type = str, default='result', help = 'output path for maps') |
33 parser.add_argument("--medium_selector", type=str, required=True, | 39 argsNamespace = parser.parse_args(args) |
34 help="Medium selection option") | 40 # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection |
35 | 41 |
36 parser.add_argument("--gene_format", type=str, default="Default", | 42 return argsNamespace |
37 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ") | |
38 | |
39 parser.add_argument("--out_tabular", type=str, | |
40 help="Output file for the merged dataset (CSV or XLSX)") | |
41 | |
42 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | |
43 help="Tool directory (passed from Galaxy as $__tool_directory__)") | |
44 | |
45 | |
46 return parser.parse_args(args) | |
47 | 43 |
48 ################################- INPUT DATA LOADING -################################ | 44 ################################- INPUT DATA LOADING -################################ |
49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 45 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: |
50 """ | 46 """ |
51 Loads a custom model from a file, either in JSON or XML format. | 47 Loads a custom model from a file, either in JSON or XML format. |
145 for reaction in model.reactions: | 141 for reaction in model.reactions: |
146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | 142 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] |
147 return bounds | 143 return bounds |
148 | 144 |
149 | 145 |
150 | |
151 def generate_compartments(model: cobra.Model) -> pd.DataFrame: | |
152 """ | |
153 Generates a DataFrame containing compartment information for each reaction. | |
154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.) | |
155 | |
156 Args: | |
157 model: the COBRA model to extract compartment data from. | |
158 | |
159 Returns: | |
160 pd.DataFrame: DataFrame with ReactionID and compartment columns | |
161 """ | |
162 pathway_data = [] | |
163 | |
164 # First pass: determine the maximum number of pathways any reaction has | |
165 max_pathways = 0 | |
166 reaction_pathways = {} | |
167 | |
168 for reaction in model.reactions: | |
169 # Get unique pathways from all metabolites in the reaction | |
170 if type(reaction.annotation['pathways']) == list: | |
171 reaction_pathways[reaction.id] = reaction.annotation['pathways'] | |
172 max_pathways = max(max_pathways, len(reaction.annotation['pathways'])) | |
173 else: | |
174 reaction_pathways[reaction.id] = [reaction.annotation['pathways']] | |
175 | |
176 # Create column names for pathways | |
177 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)] | |
178 | |
179 # Second pass: create the data | |
180 for reaction_id, pathways in reaction_pathways.items(): | |
181 row = {"ReactionID": reaction_id} | |
182 | |
183 # Fill pathway columns | |
184 for i in range(max_pathways): | |
185 col_name = pathway_columns[i] | |
186 if i < len(pathways): | |
187 row[col_name] = pathways[i] | |
188 else: | |
189 row[col_name] = None # or "" if you prefer empty strings | |
190 | |
191 pathway_data.append(row) | |
192 | |
193 return pd.DataFrame(pathway_data) | |
194 | |
195 | |
196 ###############################- FILE SAVING -################################ | 146 ###############################- FILE SAVING -################################ |
197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 147 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: |
198 """ | 148 """ |
199 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 149 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. |
200 | 150 |
230 writer.writeheader() | 180 writer.writeheader() |
231 | 181 |
232 for key, value in data.items(): | 182 for key, value in data.items(): |
233 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 183 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) |
234 | 184 |
235 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | |
236 try: | |
237 os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | |
238 df.to_csv(path, sep="\t", index=False) | |
239 except Exception as e: | |
240 raise utils.DataErr(path, f"failed writing tabular output: {e}") | |
241 | |
242 | |
243 ###############################- ENTRY POINT -################################ | 185 ###############################- ENTRY POINT -################################ |
244 def main(args:List[str] = None) -> None: | 186 def main(args:List[str] = None) -> None: |
245 """ | 187 """ |
246 Initializes everything and sets the program in motion based on the fronted input arguments. | 188 Initializes everything and sets the program in motion based on the fronted input arguments. |
247 | 189 |
250 """ | 192 """ |
251 # get args from frontend (related xml) | 193 # get args from frontend (related xml) |
252 global ARGS | 194 global ARGS |
253 ARGS = process_args(args) | 195 ARGS = process_args(args) |
254 | 196 |
255 | 197 # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this! |
256 if ARGS.input: | 198 if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path) |
257 # load custom model | 199 |
258 model = load_custom_model( | 200 # load custom model |
259 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 201 model = load_custom_model( |
260 else: | 202 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) |
261 # load built-in model | |
262 | |
263 try: | |
264 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2'] | |
265 except KeyError: | |
266 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | |
267 | |
268 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | |
269 try: | |
270 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
271 except Exception as e: | |
272 # Wrap/normalize load errors as DataErr for consistency | |
273 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | |
274 | |
275 # Determine final model name: explicit --name overrides, otherwise use the model id | |
276 | |
277 model_name = ARGS.name if ARGS.name else ARGS.model | |
278 | |
279 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | |
280 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
281 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
282 medium = df_mediums[[ARGS.medium_selector]] | |
283 medium = medium[ARGS.medium_selector].to_dict() | |
284 | |
285 # Set all reactions to zero in the medium | |
286 for rxn_id, _ in model.medium.items(): | |
287 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | |
288 | |
289 # Set medium conditions | |
290 for reaction, value in medium.items(): | |
291 if value is not None: | |
292 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
293 | |
294 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default": | |
295 | |
296 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC ")) | |
297 | 203 |
298 # generate data | 204 # generate data |
299 rules = generate_rules(model, asParsed = False) | 205 rules = generate_rules(model, asParsed = False) |
300 reactions = generate_reactions(model, asParsed = False) | 206 reactions = generate_reactions(model, asParsed = False) |
301 bounds = generate_bounds(model) | 207 bounds = generate_bounds(model) |
302 medium = get_medium(model) | 208 medium = get_medium(model) |
303 if ARGS.name == "ENGRO2": | 209 |
304 compartments = generate_compartments(model) | 210 # save files out of collection: path coming from xml |
305 | 211 save_as_csv(rules, ARGS.out_rules, ("ReactionID", "Rule")) |
306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | 212 save_as_csv(reactions, ARGS.out_reactions, ("ReactionID", "Reaction")) |
307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | 213 bounds.to_csv(ARGS.out_bounds, sep = '\t') |
308 | 214 medium.to_csv(ARGS.out_medium, sep = '\t') |
309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | |
310 df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | |
311 df_medium["InMedium"] = True # flag per indicare la presenza nel medium | |
312 | |
313 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | |
314 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | |
315 if ARGS.name == "ENGRO2": | |
316 merged = merged.merge(compartments, on = "ReactionID", how = "outer") | |
317 merged = merged.merge(df_medium, on = "ReactionID", how = "left") | |
318 | |
319 merged["InMedium"] = merged["InMedium"].fillna(False) | |
320 | |
321 merged = merged.sort_values(by = "InMedium", ascending = False) | |
322 | |
323 #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") | |
324 | |
325 #merged.to_csv(out_file, sep = '\t', index = False) | |
326 | |
327 | |
328 #### | |
329 | |
330 | |
331 if not ARGS.out_tabular: | |
332 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | |
333 save_as_tabular_df(merged, ARGS.out_tabular) | |
334 expected = ARGS.out_tabular | |
335 | |
336 # verify output exists and non-empty | |
337 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | |
338 raise utils.DataErr(expected, "Output non creato o vuoto") | |
339 | |
340 print("CustomDataGenerator: completed successfully") | |
341 | 215 |
342 if __name__ == '__main__': | 216 if __name__ == '__main__': |
343 main() | 217 main() |