comparison COBRAxy/custom_data_generator_beta.py @ 406:187cee1a00e2 draft

Uploaded
author francesco_lapi
date Mon, 08 Sep 2025 14:44:15 +0000
parents
children 6b015d3184ab
comparison
equal deleted inserted replaced
405:716b1a638fb5 406:187cee1a00e2
1 import os
2 import csv
3 import cobra
4 import pickle
5 import argparse
6 import pandas as pd
7 import utils.general_utils as utils
8 import utils.rule_parsing as rulesUtils
9 from typing import Optional, Tuple, Union, List, Dict
10 import utils.reaction_parsing as reactionUtils
11
12 ARGS : argparse.Namespace
13 def process_args(args: List[str] = None) -> argparse.Namespace:
14 """
15 Parse command-line arguments for CustomDataGenerator.
16 """
17
18 parser = argparse.ArgumentParser(
19 usage="%(prog)s [options]",
20 description="Generate custom data from a given model"
21 )
22
23 parser.add_argument("--out_log", type=str, required=True,
24 help="Output log file")
25
26 parser.add_argument("--model", type=str,
27 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
28 parser.add_argument("--input", type=str,
29 help="Custom model file (JSON or XML)")
30 parser.add_argument("--name", type=str, required=True,
31 help="Model name (default or custom)")
32
33 parser.add_argument("--medium_selector", type=str, required=True,
34 help="Medium selection option")
35
36 parser.add_argument("--gene_format", type=str, default="Default",
37 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
38
39 parser.add_argument("--out_tabular", type=str,
40 help="Output file for the merged dataset (CSV or XLSX)")
41
42 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
43 help="Tool directory (passed from Galaxy as $__tool_directory__)")
44
45
46 return parser.parse_args(args)
47
48 ################################- INPUT DATA LOADING -################################
49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
50 """
51 Loads a custom model from a file, either in JSON or XML format.
52
53 Args:
54 file_path : The path to the file containing the custom model.
55 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
56
57 Raises:
58 DataErr : if the file is in an invalid format or cannot be opened for whatever reason.
59
60 Returns:
61 cobra.Model : the model, if successfully opened.
62 """
63 ext = ext if ext else file_path.ext
64 try:
65 if ext is utils.FileFormat.XML:
66 return cobra.io.read_sbml_model(file_path.show())
67
68 if ext is utils.FileFormat.JSON:
69 return cobra.io.load_json_model(file_path.show())
70
71 except Exception as e: raise utils.DataErr(file_path, e.__str__())
72 raise utils.DataErr(file_path,
73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
74
75 ################################- DATA GENERATION -################################
76 ReactionId = str
77 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
78 """
79 Generates a dictionary mapping reaction ids to rules from the model.
80
81 Args:
82 model : the model to derive data from.
83 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
84
85 Returns:
86 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
87 Dict[ReactionId, str] : the generated dictionary of raw rules.
88 """
89 # Is the below approach convoluted? yes
90 # Ok but is it inefficient? probably
91 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
92 _ruleGetter = lambda reaction : reaction.gene_reaction_rule
93 ruleExtractor = (lambda reaction :
94 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
95
96 return {
97 reaction.id : ruleExtractor(reaction)
98 for reaction in model.reactions
99 if reaction.gene_reaction_rule }
100
101 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
102 """
103 Generates a dictionary mapping reaction ids to reaction formulas from the model.
104
105 Args:
106 model : the model to derive data from.
107 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
108
109 Returns:
110 Dict[ReactionId, str] : the generated dictionary.
111 """
112
113 unparsedReactions = {
114 reaction.id : reaction.reaction
115 for reaction in model.reactions
116 if reaction.reaction
117 }
118
119 if not asParsed: return unparsedReactions
120
121 return reactionUtils.create_reaction_dict(unparsedReactions)
122
123 def get_medium(model:cobra.Model) -> pd.DataFrame:
124 trueMedium=[]
125 for r in model.reactions:
126 positiveCoeff=0
127 for m in r.metabolites:
128 if r.get_coefficient(m.id)>0:
129 positiveCoeff=1;
130 if (positiveCoeff==0 and r.lower_bound<0):
131 trueMedium.append(r.id)
132
133 df_medium = pd.DataFrame()
134 df_medium["reaction"] = trueMedium
135 return df_medium
136
137 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
138
139 rxns = []
140 for reaction in model.reactions:
141 rxns.append(reaction.id)
142
143 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
144
145 for reaction in model.reactions:
146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
147 return bounds
148
149
150
151 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
152 """
153 Generates a DataFrame containing compartment information for each reaction.
154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
155
156 Args:
157 model: the COBRA model to extract compartment data from.
158
159 Returns:
160 pd.DataFrame: DataFrame with ReactionID and compartment columns
161 """
162 pathway_data = []
163
164 # First pass: determine the maximum number of pathways any reaction has
165 max_pathways = 0
166 reaction_pathways = {}
167
168 for reaction in model.reactions:
169 # Get unique pathways from all metabolites in the reaction
170 if type(reaction.annotation['pathways']) == list:
171 reaction_pathways[reaction.id] = reaction.annotation['pathways']
172 max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
173 else:
174 reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
175
176 # Create column names for pathways
177 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
178
179 # Second pass: create the data
180 for reaction_id, pathways in reaction_pathways.items():
181 row = {"ReactionID": reaction_id}
182
183 # Fill pathway columns
184 for i in range(max_pathways):
185 col_name = pathway_columns[i]
186 if i < len(pathways):
187 row[col_name] = pathways[i]
188 else:
189 row[col_name] = None # or "" if you prefer empty strings
190
191 pathway_data.append(row)
192
193 return pd.DataFrame(pathway_data)
194
195
196 ###############################- FILE SAVING -################################
197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
198 """
199 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
200
201 Args:
202 data : the data to be written to the file.
203 file_path : the path to the .csv file.
204 fieldNames : the names of the fields (columns) in the .csv file.
205
206 Returns:
207 None
208 """
209 with open(file_path.show(), 'w', newline='') as csvfile:
210 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
211 writer.writeheader()
212
213 for key, value in data.items():
214 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
215
216 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
217 """
218 Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
219
220 Args:
221 data : the data to be written to the file.
222 file_path : the path to the .csv file.
223 fieldNames : the names of the fields (columns) in the .csv file.
224
225 Returns:
226 None
227 """
228 with open(file_path, 'w', newline='') as csvfile:
229 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
230 writer.writeheader()
231
232 for key, value in data.items():
233 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
234
235 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
236 try:
237 os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
238 df.to_csv(path, sep="\t", index=False)
239 except Exception as e:
240 raise utils.DataErr(path, f"failed writing tabular output: {e}")
241
242
243 ###############################- ENTRY POINT -################################
244 def main(args:List[str] = None) -> None:
245 """
246 Initializes everything and sets the program in motion based on the fronted input arguments.
247
248 Returns:
249 None
250 """
251 # get args from frontend (related xml)
252 global ARGS
253 ARGS = process_args(args)
254
255
256 if ARGS.input:
257 # load custom model
258 model = load_custom_model(
259 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
260 else:
261 # load built-in model
262
263 try:
264 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2']
265 except KeyError:
266 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
267
268 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
269 try:
270 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
271 except Exception as e:
272 # Wrap/normalize load errors as DataErr for consistency
273 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
274
275 # Determine final model name: explicit --name overrides, otherwise use the model id
276
277 model_name = ARGS.name if ARGS.name else ARGS.model
278
279 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
280 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
281 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
282 medium = df_mediums[[ARGS.medium_selector]]
283 medium = medium[ARGS.medium_selector].to_dict()
284
285 # Set all reactions to zero in the medium
286 for rxn_id, _ in model.medium.items():
287 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
288
289 # Set medium conditions
290 for reaction, value in medium.items():
291 if value is not None:
292 model.reactions.get_by_id(reaction).lower_bound = -float(value)
293
294 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default":
295
296 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
297
298 # generate data
299 rules = generate_rules(model, asParsed = False)
300 reactions = generate_reactions(model, asParsed = False)
301 bounds = generate_bounds(model)
302 medium = get_medium(model)
303 if ARGS.name == "ENGRO2":
304 compartments = generate_compartments(model)
305
306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
308
309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
310 df_medium = medium.rename(columns = {"reaction": "ReactionID"})
311 df_medium["InMedium"] = True # flag per indicare la presenza nel medium
312
313 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
314 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
315 if ARGS.name == "ENGRO2":
316 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
317 merged = merged.merge(df_medium, on = "ReactionID", how = "left")
318
319 merged["InMedium"] = merged["InMedium"].fillna(False)
320
321 merged = merged.sort_values(by = "InMedium", ascending = False)
322
323 #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data")
324
325 #merged.to_csv(out_file, sep = '\t', index = False)
326
327
328 ####
329
330
331 if not ARGS.out_tabular:
332 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
333 save_as_tabular_df(merged, ARGS.out_tabular)
334 expected = ARGS.out_tabular
335
336 # verify output exists and non-empty
337 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
338 raise utils.DataErr(expected, "Output non creato o vuoto")
339
340 print("CustomDataGenerator: completed successfully")
341
342 if __name__ == '__main__':
343 main()