Mercurial > repos > bimib > cobraxy
comparison COBRAxy/custom_data_generator_beta.py @ 406:187cee1a00e2 draft
Uploaded
author | francesco_lapi |
---|---|
date | Mon, 08 Sep 2025 14:44:15 +0000 |
parents | |
children | 6b015d3184ab |
comparison
equal
deleted
inserted
replaced
405:716b1a638fb5 | 406:187cee1a00e2 |
---|---|
1 import os | |
2 import csv | |
3 import cobra | |
4 import pickle | |
5 import argparse | |
6 import pandas as pd | |
7 import utils.general_utils as utils | |
8 import utils.rule_parsing as rulesUtils | |
9 from typing import Optional, Tuple, Union, List, Dict | |
10 import utils.reaction_parsing as reactionUtils | |
11 | |
12 ARGS : argparse.Namespace | |
13 def process_args(args: List[str] = None) -> argparse.Namespace: | |
14 """ | |
15 Parse command-line arguments for CustomDataGenerator. | |
16 """ | |
17 | |
18 parser = argparse.ArgumentParser( | |
19 usage="%(prog)s [options]", | |
20 description="Generate custom data from a given model" | |
21 ) | |
22 | |
23 parser.add_argument("--out_log", type=str, required=True, | |
24 help="Output log file") | |
25 | |
26 parser.add_argument("--model", type=str, | |
27 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | |
28 parser.add_argument("--input", type=str, | |
29 help="Custom model file (JSON or XML)") | |
30 parser.add_argument("--name", type=str, required=True, | |
31 help="Model name (default or custom)") | |
32 | |
33 parser.add_argument("--medium_selector", type=str, required=True, | |
34 help="Medium selection option") | |
35 | |
36 parser.add_argument("--gene_format", type=str, default="Default", | |
37 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ") | |
38 | |
39 parser.add_argument("--out_tabular", type=str, | |
40 help="Output file for the merged dataset (CSV or XLSX)") | |
41 | |
42 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | |
43 help="Tool directory (passed from Galaxy as $__tool_directory__)") | |
44 | |
45 | |
46 return parser.parse_args(args) | |
47 | |
48 ################################- INPUT DATA LOADING -################################ | |
49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | |
50 """ | |
51 Loads a custom model from a file, either in JSON or XML format. | |
52 | |
53 Args: | |
54 file_path : The path to the file containing the custom model. | |
55 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | |
56 | |
57 Raises: | |
58 DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | |
59 | |
60 Returns: | |
61 cobra.Model : the model, if successfully opened. | |
62 """ | |
63 ext = ext if ext else file_path.ext | |
64 try: | |
65 if ext is utils.FileFormat.XML: | |
66 return cobra.io.read_sbml_model(file_path.show()) | |
67 | |
68 if ext is utils.FileFormat.JSON: | |
69 return cobra.io.load_json_model(file_path.show()) | |
70 | |
71 except Exception as e: raise utils.DataErr(file_path, e.__str__()) | |
72 raise utils.DataErr(file_path, | |
73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | |
74 | |
75 ################################- DATA GENERATION -################################ | |
76 ReactionId = str | |
77 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | |
78 """ | |
79 Generates a dictionary mapping reaction ids to rules from the model. | |
80 | |
81 Args: | |
82 model : the model to derive data from. | |
83 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | |
84 | |
85 Returns: | |
86 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | |
87 Dict[ReactionId, str] : the generated dictionary of raw rules. | |
88 """ | |
89 # Is the below approach convoluted? yes | |
90 # Ok but is it inefficient? probably | |
91 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | |
92 _ruleGetter = lambda reaction : reaction.gene_reaction_rule | |
93 ruleExtractor = (lambda reaction : | |
94 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | |
95 | |
96 return { | |
97 reaction.id : ruleExtractor(reaction) | |
98 for reaction in model.reactions | |
99 if reaction.gene_reaction_rule } | |
100 | |
101 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | |
102 """ | |
103 Generates a dictionary mapping reaction ids to reaction formulas from the model. | |
104 | |
105 Args: | |
106 model : the model to derive data from. | |
107 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | |
108 | |
109 Returns: | |
110 Dict[ReactionId, str] : the generated dictionary. | |
111 """ | |
112 | |
113 unparsedReactions = { | |
114 reaction.id : reaction.reaction | |
115 for reaction in model.reactions | |
116 if reaction.reaction | |
117 } | |
118 | |
119 if not asParsed: return unparsedReactions | |
120 | |
121 return reactionUtils.create_reaction_dict(unparsedReactions) | |
122 | |
123 def get_medium(model:cobra.Model) -> pd.DataFrame: | |
124 trueMedium=[] | |
125 for r in model.reactions: | |
126 positiveCoeff=0 | |
127 for m in r.metabolites: | |
128 if r.get_coefficient(m.id)>0: | |
129 positiveCoeff=1; | |
130 if (positiveCoeff==0 and r.lower_bound<0): | |
131 trueMedium.append(r.id) | |
132 | |
133 df_medium = pd.DataFrame() | |
134 df_medium["reaction"] = trueMedium | |
135 return df_medium | |
136 | |
137 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | |
138 | |
139 rxns = [] | |
140 for reaction in model.reactions: | |
141 rxns.append(reaction.id) | |
142 | |
143 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | |
144 | |
145 for reaction in model.reactions: | |
146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | |
147 return bounds | |
148 | |
149 | |
150 | |
151 def generate_compartments(model: cobra.Model) -> pd.DataFrame: | |
152 """ | |
153 Generates a DataFrame containing compartment information for each reaction. | |
154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.) | |
155 | |
156 Args: | |
157 model: the COBRA model to extract compartment data from. | |
158 | |
159 Returns: | |
160 pd.DataFrame: DataFrame with ReactionID and compartment columns | |
161 """ | |
162 pathway_data = [] | |
163 | |
164 # First pass: determine the maximum number of pathways any reaction has | |
165 max_pathways = 0 | |
166 reaction_pathways = {} | |
167 | |
168 for reaction in model.reactions: | |
169 # Get unique pathways from all metabolites in the reaction | |
170 if type(reaction.annotation['pathways']) == list: | |
171 reaction_pathways[reaction.id] = reaction.annotation['pathways'] | |
172 max_pathways = max(max_pathways, len(reaction.annotation['pathways'])) | |
173 else: | |
174 reaction_pathways[reaction.id] = [reaction.annotation['pathways']] | |
175 | |
176 # Create column names for pathways | |
177 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)] | |
178 | |
179 # Second pass: create the data | |
180 for reaction_id, pathways in reaction_pathways.items(): | |
181 row = {"ReactionID": reaction_id} | |
182 | |
183 # Fill pathway columns | |
184 for i in range(max_pathways): | |
185 col_name = pathway_columns[i] | |
186 if i < len(pathways): | |
187 row[col_name] = pathways[i] | |
188 else: | |
189 row[col_name] = None # or "" if you prefer empty strings | |
190 | |
191 pathway_data.append(row) | |
192 | |
193 return pd.DataFrame(pathway_data) | |
194 | |
195 | |
196 ###############################- FILE SAVING -################################ | |
197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | |
198 """ | |
199 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | |
200 | |
201 Args: | |
202 data : the data to be written to the file. | |
203 file_path : the path to the .csv file. | |
204 fieldNames : the names of the fields (columns) in the .csv file. | |
205 | |
206 Returns: | |
207 None | |
208 """ | |
209 with open(file_path.show(), 'w', newline='') as csvfile: | |
210 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | |
211 writer.writeheader() | |
212 | |
213 for key, value in data.items(): | |
214 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
215 | |
216 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | |
217 """ | |
218 Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | |
219 | |
220 Args: | |
221 data : the data to be written to the file. | |
222 file_path : the path to the .csv file. | |
223 fieldNames : the names of the fields (columns) in the .csv file. | |
224 | |
225 Returns: | |
226 None | |
227 """ | |
228 with open(file_path, 'w', newline='') as csvfile: | |
229 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | |
230 writer.writeheader() | |
231 | |
232 for key, value in data.items(): | |
233 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
234 | |
235 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | |
236 try: | |
237 os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | |
238 df.to_csv(path, sep="\t", index=False) | |
239 except Exception as e: | |
240 raise utils.DataErr(path, f"failed writing tabular output: {e}") | |
241 | |
242 | |
243 ###############################- ENTRY POINT -################################ | |
244 def main(args:List[str] = None) -> None: | |
245 """ | |
246 Initializes everything and sets the program in motion based on the fronted input arguments. | |
247 | |
248 Returns: | |
249 None | |
250 """ | |
251 # get args from frontend (related xml) | |
252 global ARGS | |
253 ARGS = process_args(args) | |
254 | |
255 | |
256 if ARGS.input: | |
257 # load custom model | |
258 model = load_custom_model( | |
259 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | |
260 else: | |
261 # load built-in model | |
262 | |
263 try: | |
264 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2'] | |
265 except KeyError: | |
266 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | |
267 | |
268 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | |
269 try: | |
270 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
271 except Exception as e: | |
272 # Wrap/normalize load errors as DataErr for consistency | |
273 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | |
274 | |
275 # Determine final model name: explicit --name overrides, otherwise use the model id | |
276 | |
277 model_name = ARGS.name if ARGS.name else ARGS.model | |
278 | |
279 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | |
280 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
281 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
282 medium = df_mediums[[ARGS.medium_selector]] | |
283 medium = medium[ARGS.medium_selector].to_dict() | |
284 | |
285 # Set all reactions to zero in the medium | |
286 for rxn_id, _ in model.medium.items(): | |
287 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | |
288 | |
289 # Set medium conditions | |
290 for reaction, value in medium.items(): | |
291 if value is not None: | |
292 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
293 | |
294 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default": | |
295 | |
296 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC ")) | |
297 | |
298 # generate data | |
299 rules = generate_rules(model, asParsed = False) | |
300 reactions = generate_reactions(model, asParsed = False) | |
301 bounds = generate_bounds(model) | |
302 medium = get_medium(model) | |
303 if ARGS.name == "ENGRO2": | |
304 compartments = generate_compartments(model) | |
305 | |
306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | |
307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | |
308 | |
309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | |
310 df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | |
311 df_medium["InMedium"] = True # flag per indicare la presenza nel medium | |
312 | |
313 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | |
314 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | |
315 if ARGS.name == "ENGRO2": | |
316 merged = merged.merge(compartments, on = "ReactionID", how = "outer") | |
317 merged = merged.merge(df_medium, on = "ReactionID", how = "left") | |
318 | |
319 merged["InMedium"] = merged["InMedium"].fillna(False) | |
320 | |
321 merged = merged.sort_values(by = "InMedium", ascending = False) | |
322 | |
323 #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") | |
324 | |
325 #merged.to_csv(out_file, sep = '\t', index = False) | |
326 | |
327 | |
328 #### | |
329 | |
330 | |
331 if not ARGS.out_tabular: | |
332 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | |
333 save_as_tabular_df(merged, ARGS.out_tabular) | |
334 expected = ARGS.out_tabular | |
335 | |
336 # verify output exists and non-empty | |
337 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | |
338 raise utils.DataErr(expected, "Output non creato o vuoto") | |
339 | |
340 print("CustomDataGenerator: completed successfully") | |
341 | |
342 if __name__ == '__main__': | |
343 main() |