Mercurial > repos > bimib > cobraxy
comparison COBRAxy/custom_data_generator_beta.py @ 406:187cee1a00e2 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Mon, 08 Sep 2025 14:44:15 +0000 |
| parents | |
| children | 6b015d3184ab |
comparison
equal
deleted
inserted
replaced
| 405:716b1a638fb5 | 406:187cee1a00e2 |
|---|---|
| 1 import os | |
| 2 import csv | |
| 3 import cobra | |
| 4 import pickle | |
| 5 import argparse | |
| 6 import pandas as pd | |
| 7 import utils.general_utils as utils | |
| 8 import utils.rule_parsing as rulesUtils | |
| 9 from typing import Optional, Tuple, Union, List, Dict | |
| 10 import utils.reaction_parsing as reactionUtils | |
| 11 | |
| 12 ARGS : argparse.Namespace | |
| 13 def process_args(args: List[str] = None) -> argparse.Namespace: | |
| 14 """ | |
| 15 Parse command-line arguments for CustomDataGenerator. | |
| 16 """ | |
| 17 | |
| 18 parser = argparse.ArgumentParser( | |
| 19 usage="%(prog)s [options]", | |
| 20 description="Generate custom data from a given model" | |
| 21 ) | |
| 22 | |
| 23 parser.add_argument("--out_log", type=str, required=True, | |
| 24 help="Output log file") | |
| 25 | |
| 26 parser.add_argument("--model", type=str, | |
| 27 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | |
| 28 parser.add_argument("--input", type=str, | |
| 29 help="Custom model file (JSON or XML)") | |
| 30 parser.add_argument("--name", type=str, required=True, | |
| 31 help="Model name (default or custom)") | |
| 32 | |
| 33 parser.add_argument("--medium_selector", type=str, required=True, | |
| 34 help="Medium selection option") | |
| 35 | |
| 36 parser.add_argument("--gene_format", type=str, default="Default", | |
| 37 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ") | |
| 38 | |
| 39 parser.add_argument("--out_tabular", type=str, | |
| 40 help="Output file for the merged dataset (CSV or XLSX)") | |
| 41 | |
| 42 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | |
| 43 help="Tool directory (passed from Galaxy as $__tool_directory__)") | |
| 44 | |
| 45 | |
| 46 return parser.parse_args(args) | |
| 47 | |
| 48 ################################- INPUT DATA LOADING -################################ | |
| 49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | |
| 50 """ | |
| 51 Loads a custom model from a file, either in JSON or XML format. | |
| 52 | |
| 53 Args: | |
| 54 file_path : The path to the file containing the custom model. | |
| 55 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | |
| 56 | |
| 57 Raises: | |
| 58 DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | |
| 59 | |
| 60 Returns: | |
| 61 cobra.Model : the model, if successfully opened. | |
| 62 """ | |
| 63 ext = ext if ext else file_path.ext | |
| 64 try: | |
| 65 if ext is utils.FileFormat.XML: | |
| 66 return cobra.io.read_sbml_model(file_path.show()) | |
| 67 | |
| 68 if ext is utils.FileFormat.JSON: | |
| 69 return cobra.io.load_json_model(file_path.show()) | |
| 70 | |
| 71 except Exception as e: raise utils.DataErr(file_path, e.__str__()) | |
| 72 raise utils.DataErr(file_path, | |
| 73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | |
| 74 | |
| 75 ################################- DATA GENERATION -################################ | |
| 76 ReactionId = str | |
| 77 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | |
| 78 """ | |
| 79 Generates a dictionary mapping reaction ids to rules from the model. | |
| 80 | |
| 81 Args: | |
| 82 model : the model to derive data from. | |
| 83 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | |
| 84 | |
| 85 Returns: | |
| 86 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | |
| 87 Dict[ReactionId, str] : the generated dictionary of raw rules. | |
| 88 """ | |
| 89 # Is the below approach convoluted? yes | |
| 90 # Ok but is it inefficient? probably | |
| 91 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | |
| 92 _ruleGetter = lambda reaction : reaction.gene_reaction_rule | |
| 93 ruleExtractor = (lambda reaction : | |
| 94 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | |
| 95 | |
| 96 return { | |
| 97 reaction.id : ruleExtractor(reaction) | |
| 98 for reaction in model.reactions | |
| 99 if reaction.gene_reaction_rule } | |
| 100 | |
| 101 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | |
| 102 """ | |
| 103 Generates a dictionary mapping reaction ids to reaction formulas from the model. | |
| 104 | |
| 105 Args: | |
| 106 model : the model to derive data from. | |
| 107 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | |
| 108 | |
| 109 Returns: | |
| 110 Dict[ReactionId, str] : the generated dictionary. | |
| 111 """ | |
| 112 | |
| 113 unparsedReactions = { | |
| 114 reaction.id : reaction.reaction | |
| 115 for reaction in model.reactions | |
| 116 if reaction.reaction | |
| 117 } | |
| 118 | |
| 119 if not asParsed: return unparsedReactions | |
| 120 | |
| 121 return reactionUtils.create_reaction_dict(unparsedReactions) | |
| 122 | |
| 123 def get_medium(model:cobra.Model) -> pd.DataFrame: | |
| 124 trueMedium=[] | |
| 125 for r in model.reactions: | |
| 126 positiveCoeff=0 | |
| 127 for m in r.metabolites: | |
| 128 if r.get_coefficient(m.id)>0: | |
| 129 positiveCoeff=1; | |
| 130 if (positiveCoeff==0 and r.lower_bound<0): | |
| 131 trueMedium.append(r.id) | |
| 132 | |
| 133 df_medium = pd.DataFrame() | |
| 134 df_medium["reaction"] = trueMedium | |
| 135 return df_medium | |
| 136 | |
| 137 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | |
| 138 | |
| 139 rxns = [] | |
| 140 for reaction in model.reactions: | |
| 141 rxns.append(reaction.id) | |
| 142 | |
| 143 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | |
| 144 | |
| 145 for reaction in model.reactions: | |
| 146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | |
| 147 return bounds | |
| 148 | |
| 149 | |
| 150 | |
| 151 def generate_compartments(model: cobra.Model) -> pd.DataFrame: | |
| 152 """ | |
| 153 Generates a DataFrame containing compartment information for each reaction. | |
| 154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.) | |
| 155 | |
| 156 Args: | |
| 157 model: the COBRA model to extract compartment data from. | |
| 158 | |
| 159 Returns: | |
| 160 pd.DataFrame: DataFrame with ReactionID and compartment columns | |
| 161 """ | |
| 162 pathway_data = [] | |
| 163 | |
| 164 # First pass: determine the maximum number of pathways any reaction has | |
| 165 max_pathways = 0 | |
| 166 reaction_pathways = {} | |
| 167 | |
| 168 for reaction in model.reactions: | |
| 169 # Get unique pathways from all metabolites in the reaction | |
| 170 if type(reaction.annotation['pathways']) == list: | |
| 171 reaction_pathways[reaction.id] = reaction.annotation['pathways'] | |
| 172 max_pathways = max(max_pathways, len(reaction.annotation['pathways'])) | |
| 173 else: | |
| 174 reaction_pathways[reaction.id] = [reaction.annotation['pathways']] | |
| 175 | |
| 176 # Create column names for pathways | |
| 177 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)] | |
| 178 | |
| 179 # Second pass: create the data | |
| 180 for reaction_id, pathways in reaction_pathways.items(): | |
| 181 row = {"ReactionID": reaction_id} | |
| 182 | |
| 183 # Fill pathway columns | |
| 184 for i in range(max_pathways): | |
| 185 col_name = pathway_columns[i] | |
| 186 if i < len(pathways): | |
| 187 row[col_name] = pathways[i] | |
| 188 else: | |
| 189 row[col_name] = None # or "" if you prefer empty strings | |
| 190 | |
| 191 pathway_data.append(row) | |
| 192 | |
| 193 return pd.DataFrame(pathway_data) | |
| 194 | |
| 195 | |
| 196 ###############################- FILE SAVING -################################ | |
| 197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | |
| 198 """ | |
| 199 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | |
| 200 | |
| 201 Args: | |
| 202 data : the data to be written to the file. | |
| 203 file_path : the path to the .csv file. | |
| 204 fieldNames : the names of the fields (columns) in the .csv file. | |
| 205 | |
| 206 Returns: | |
| 207 None | |
| 208 """ | |
| 209 with open(file_path.show(), 'w', newline='') as csvfile: | |
| 210 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | |
| 211 writer.writeheader() | |
| 212 | |
| 213 for key, value in data.items(): | |
| 214 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
| 215 | |
| 216 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | |
| 217 """ | |
| 218 Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | |
| 219 | |
| 220 Args: | |
| 221 data : the data to be written to the file. | |
| 222 file_path : the path to the .csv file. | |
| 223 fieldNames : the names of the fields (columns) in the .csv file. | |
| 224 | |
| 225 Returns: | |
| 226 None | |
| 227 """ | |
| 228 with open(file_path, 'w', newline='') as csvfile: | |
| 229 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | |
| 230 writer.writeheader() | |
| 231 | |
| 232 for key, value in data.items(): | |
| 233 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
| 234 | |
| 235 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | |
| 236 try: | |
| 237 os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | |
| 238 df.to_csv(path, sep="\t", index=False) | |
| 239 except Exception as e: | |
| 240 raise utils.DataErr(path, f"failed writing tabular output: {e}") | |
| 241 | |
| 242 | |
| 243 ###############################- ENTRY POINT -################################ | |
| 244 def main(args:List[str] = None) -> None: | |
| 245 """ | |
| 246 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 247 | |
| 248 Returns: | |
| 249 None | |
| 250 """ | |
| 251 # get args from frontend (related xml) | |
| 252 global ARGS | |
| 253 ARGS = process_args(args) | |
| 254 | |
| 255 | |
| 256 if ARGS.input: | |
| 257 # load custom model | |
| 258 model = load_custom_model( | |
| 259 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | |
| 260 else: | |
| 261 # load built-in model | |
| 262 | |
| 263 try: | |
| 264 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2'] | |
| 265 except KeyError: | |
| 266 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | |
| 267 | |
| 268 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | |
| 269 try: | |
| 270 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
| 271 except Exception as e: | |
| 272 # Wrap/normalize load errors as DataErr for consistency | |
| 273 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | |
| 274 | |
| 275 # Determine final model name: explicit --name overrides, otherwise use the model id | |
| 276 | |
| 277 model_name = ARGS.name if ARGS.name else ARGS.model | |
| 278 | |
| 279 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | |
| 280 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
| 281 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
| 282 medium = df_mediums[[ARGS.medium_selector]] | |
| 283 medium = medium[ARGS.medium_selector].to_dict() | |
| 284 | |
| 285 # Set all reactions to zero in the medium | |
| 286 for rxn_id, _ in model.medium.items(): | |
| 287 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | |
| 288 | |
| 289 # Set medium conditions | |
| 290 for reaction, value in medium.items(): | |
| 291 if value is not None: | |
| 292 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
| 293 | |
| 294 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default": | |
| 295 | |
| 296 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC ")) | |
| 297 | |
| 298 # generate data | |
| 299 rules = generate_rules(model, asParsed = False) | |
| 300 reactions = generate_reactions(model, asParsed = False) | |
| 301 bounds = generate_bounds(model) | |
| 302 medium = get_medium(model) | |
| 303 if ARGS.name == "ENGRO2": | |
| 304 compartments = generate_compartments(model) | |
| 305 | |
| 306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | |
| 307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | |
| 308 | |
| 309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | |
| 310 df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | |
| 311 df_medium["InMedium"] = True # flag per indicare la presenza nel medium | |
| 312 | |
| 313 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | |
| 314 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | |
| 315 if ARGS.name == "ENGRO2": | |
| 316 merged = merged.merge(compartments, on = "ReactionID", how = "outer") | |
| 317 merged = merged.merge(df_medium, on = "ReactionID", how = "left") | |
| 318 | |
| 319 merged["InMedium"] = merged["InMedium"].fillna(False) | |
| 320 | |
| 321 merged = merged.sort_values(by = "InMedium", ascending = False) | |
| 322 | |
| 323 #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") | |
| 324 | |
| 325 #merged.to_csv(out_file, sep = '\t', index = False) | |
| 326 | |
| 327 | |
| 328 #### | |
| 329 | |
| 330 | |
| 331 if not ARGS.out_tabular: | |
| 332 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | |
| 333 save_as_tabular_df(merged, ARGS.out_tabular) | |
| 334 expected = ARGS.out_tabular | |
| 335 | |
| 336 # verify output exists and non-empty | |
| 337 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | |
| 338 raise utils.DataErr(expected, "Output non creato o vuoto") | |
| 339 | |
| 340 print("CustomDataGenerator: completed successfully") | |
| 341 | |
| 342 if __name__ == '__main__': | |
| 343 main() |
