Mercurial > repos > bimib > cobraxy
comparison COBRAxy/src/marea_cluster.py @ 539:2fb97466e404 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Sat, 25 Oct 2025 14:55:13 +0000 |
| parents | |
| children | fcdbc81feb45 |
comparison
equal
deleted
inserted
replaced
| 538:fd53d42348bd | 539:2fb97466e404 |
|---|---|
| 1 # -*- coding: utf-8 -*- | |
| 2 """ | |
| 3 Created on Mon Jun 3 19:51:00 2019 | |
| 4 @author: Narger | |
| 5 """ | |
| 6 | |
| 7 import sys | |
| 8 import argparse | |
| 9 import os | |
| 10 import numpy as np | |
| 11 import pandas as pd | |
| 12 from sklearn.datasets import make_blobs | |
| 13 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
| 14 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | |
| 15 import matplotlib | |
| 16 matplotlib.use('agg') | |
| 17 import matplotlib.pyplot as plt | |
| 18 import scipy.cluster.hierarchy as shc | |
| 19 import matplotlib.cm as cm | |
| 20 from typing import Optional, Dict, List | |
| 21 | |
| 22 ################################# process args ############################### | |
| 23 def process_args(args_in :List[str] = None) -> argparse.Namespace: | |
| 24 """ | |
| 25 Processes command-line arguments. | |
| 26 | |
| 27 Args: | |
| 28 args (list): List of command-line arguments. | |
| 29 | |
| 30 Returns: | |
| 31 Namespace: An object containing parsed arguments. | |
| 32 """ | |
| 33 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 34 description = 'process some value\'s' + | |
| 35 ' genes to create class.') | |
| 36 | |
| 37 parser.add_argument('-ol', '--out_log', | |
| 38 help = "Output log") | |
| 39 | |
| 40 parser.add_argument('-in', '--input', | |
| 41 type = str, | |
| 42 help = 'input dataset') | |
| 43 | |
| 44 parser.add_argument('-cy', '--cluster_type', | |
| 45 type = str, | |
| 46 choices = ['kmeans', 'dbscan', 'hierarchy'], | |
| 47 default = 'kmeans', | |
| 48 help = 'choose clustering algorythm') | |
| 49 | |
| 50 parser.add_argument('-sc', '--scaling', | |
| 51 type = str, | |
| 52 choices = ['true', 'false'], | |
| 53 default = 'true', | |
| 54 help = 'choose if you want to scaling the data') | |
| 55 | |
| 56 parser.add_argument('-k1', '--k_min', | |
| 57 type = int, | |
| 58 default = 2, | |
| 59 help = 'choose minimun cluster number to be generated') | |
| 60 | |
| 61 parser.add_argument('-k2', '--k_max', | |
| 62 type = int, | |
| 63 default = 7, | |
| 64 help = 'choose maximum cluster number to be generated') | |
| 65 | |
| 66 parser.add_argument('-el', '--elbow', | |
| 67 type = str, | |
| 68 default = 'false', | |
| 69 choices = ['true', 'false'], | |
| 70 help = 'choose if you want to generate an elbow plot for kmeans') | |
| 71 | |
| 72 parser.add_argument('-si', '--silhouette', | |
| 73 type = str, | |
| 74 default = 'false', | |
| 75 choices = ['true', 'false'], | |
| 76 help = 'choose if you want silhouette plots') | |
| 77 | |
| 78 parser.add_argument('-td', '--tool_dir', | |
| 79 type = str, | |
| 80 required = True, | |
| 81 help = 'your tool directory') | |
| 82 | |
| 83 parser.add_argument('-ms', '--min_samples', | |
| 84 type = int, | |
| 85 help = 'min samples for dbscan (optional)') | |
| 86 | |
| 87 parser.add_argument('-ep', '--eps', | |
| 88 type = float, | |
| 89 help = 'eps for dbscan (optional)') | |
| 90 | |
| 91 parser.add_argument('-bc', '--best_cluster', | |
| 92 type = str, | |
| 93 help = 'output of best cluster tsv') | |
| 94 | |
| 95 parser.add_argument( | |
| 96 '-idop', '--output_path', | |
| 97 type = str, | |
| 98 default='clustering/', | |
| 99 help = 'output path for maps') | |
| 100 | |
| 101 args_in = parser.parse_args(args_in) | |
| 102 return args_in | |
| 103 | |
| 104 ########################### warning ########################################### | |
| 105 def warning(s :str) -> None: | |
| 106 """ | |
| 107 Log a warning message to an output log file and print it to the console. | |
| 108 | |
| 109 Args: | |
| 110 s (str): The warning message to be logged and printed. | |
| 111 | |
| 112 Returns: | |
| 113 None | |
| 114 """ | |
| 115 | |
| 116 with open(args.out_log, 'a') as log: | |
| 117 log.write(s + "\n\n") | |
| 118 print(s) | |
| 119 | |
| 120 ########################## read dataset ###################################### | |
| 121 def read_dataset(dataset :str) -> pd.DataFrame: | |
| 122 """ | |
| 123 Read dataset from a CSV file and return it as a Pandas DataFrame. | |
| 124 | |
| 125 Args: | |
| 126 dataset (str): the path to the dataset to convert into a DataFrame | |
| 127 | |
| 128 Returns: | |
| 129 pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | |
| 130 | |
| 131 Raises: | |
| 132 pandas.errors.EmptyDataError: If the dataset file is empty. | |
| 133 sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | |
| 134 """ | |
| 135 try: | |
| 136 dataset = pd.read_csv(dataset, sep = '\t', header = 0) | |
| 137 except pd.errors.EmptyDataError: | |
| 138 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 139 if len(dataset.columns) < 2: | |
| 140 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 141 return dataset | |
| 142 | |
| 143 ############################ rewrite_input ################################### | |
| 144 def rewrite_input(dataset :Dict) -> Dict[str, List[Optional[float]]]: | |
| 145 """ | |
| 146 Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | |
| 147 | |
| 148 Args: | |
| 149 dataset (pandas.DataFrame): The dataset to be rewritten. | |
| 150 | |
| 151 Returns: | |
| 152 dict: The rewritten dataset as a dictionary of lists. | |
| 153 """ | |
| 154 #Riscrivo il dataset come dizionario di liste, | |
| 155 #non come dizionario di dizionari | |
| 156 #dataset.pop('Reactions', None) | |
| 157 | |
| 158 for key, val in dataset.items(): | |
| 159 l = [] | |
| 160 for i in val: | |
| 161 if i == 'None': | |
| 162 l.append(None) | |
| 163 else: | |
| 164 l.append(float(i)) | |
| 165 | |
| 166 dataset[key] = l | |
| 167 | |
| 168 return dataset | |
| 169 | |
| 170 ############################## write to csv ################################## | |
| 171 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | |
| 172 """ | |
| 173 Write dataset and predicted labels to a CSV file. | |
| 174 | |
| 175 Args: | |
| 176 dataset (pandas.DataFrame): The dataset to be written. | |
| 177 labels (list): The predicted labels for each data point. | |
| 178 name (str): The name of the output CSV file. | |
| 179 | |
| 180 Returns: | |
| 181 None | |
| 182 """ | |
| 183 #labels = predict | |
| 184 predict = [x+1 for x in labels] | |
| 185 | |
| 186 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 187 | |
| 188 dest = name | |
| 189 classe.to_csv(dest, sep = '\t', index = False, | |
| 190 header = ['Patient_ID', 'Class']) | |
| 191 | |
| 192 ########################### trova il massimo in lista ######################## | |
| 193 def max_index (lista :List[int]) -> int: | |
| 194 """ | |
| 195 Find the index of the maximum value in a list. | |
| 196 | |
| 197 Args: | |
| 198 lista (list): The list in which we search for the index of the maximum value. | |
| 199 | |
| 200 Returns: | |
| 201 int: The index of the maximum value in the list. | |
| 202 """ | |
| 203 best = -1 | |
| 204 best_index = 0 | |
| 205 for i in range(len(lista)): | |
| 206 if lista[i] > best: | |
| 207 best = lista [i] | |
| 208 best_index = i | |
| 209 | |
| 210 return best_index | |
| 211 | |
| 212 ################################ kmeans ##################################### | |
| 213 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | |
| 214 """ | |
| 215 Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | |
| 216 The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | |
| 217 | |
| 218 Args: | |
| 219 k_min (int): The minimum number of clusters to consider. | |
| 220 k_max (int): The maximum number of clusters to consider. | |
| 221 dataset (pandas.DataFrame): The dataset to perform clustering on. | |
| 222 elbow (str): Whether to generate an elbow plot for kmeans ('True' or 'False'). | |
| 223 silhouette (str): Whether to generate silhouette plots ('True' or 'False'). | |
| 224 best_cluster (str): The file path to save the output of the best cluster. | |
| 225 | |
| 226 Returns: | |
| 227 None | |
| 228 """ | |
| 229 if not os.path.exists(args.output_path): | |
| 230 os.makedirs(args.output_path) | |
| 231 | |
| 232 | |
| 233 if elbow == 'true': | |
| 234 elbow = True | |
| 235 else: | |
| 236 elbow = False | |
| 237 | |
| 238 if silhouette == 'true': | |
| 239 silhouette = True | |
| 240 else: | |
| 241 silhouette = False | |
| 242 | |
| 243 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 244 distortions = [] | |
| 245 scores = [] | |
| 246 all_labels = [] | |
| 247 | |
| 248 clusterer = KMeans(n_clusters=1, random_state=10) | |
| 249 distortions.append(clusterer.fit(dataset).inertia_) | |
| 250 | |
| 251 | |
| 252 for n_clusters in range_n_clusters: | |
| 253 clusterer = KMeans(n_clusters=n_clusters, random_state=10) | |
| 254 cluster_labels = clusterer.fit_predict(dataset) | |
| 255 | |
| 256 all_labels.append(cluster_labels) | |
| 257 if n_clusters == 1: | |
| 258 silhouette_avg = 0 | |
| 259 else: | |
| 260 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
| 261 scores.append(silhouette_avg) | |
| 262 distortions.append(clusterer.fit(dataset).inertia_) | |
| 263 | |
| 264 best = max_index(scores) + k_min | |
| 265 | |
| 266 for i in range(len(all_labels)): | |
| 267 prefix = '' | |
| 268 if (i + k_min == best): | |
| 269 prefix = '_BEST' | |
| 270 | |
| 271 write_to_csv(dataset, all_labels[i], f'{args.output_path}/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | |
| 272 | |
| 273 | |
| 274 if (prefix == '_BEST'): | |
| 275 labels = all_labels[i] | |
| 276 predict = [x+1 for x in labels] | |
| 277 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 278 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 279 | |
| 280 | |
| 281 | |
| 282 | |
| 283 if silhouette: | |
| 284 silhouette_draw(dataset, all_labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 285 | |
| 286 | |
| 287 if elbow: | |
| 288 elbow_plot(distortions, k_min,k_max) | |
| 289 | |
| 290 | |
| 291 | |
| 292 | |
| 293 | |
| 294 ############################## elbow_plot #################################### | |
| 295 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | |
| 296 """ | |
| 297 Generate an elbow plot to visualize the distortion for different numbers of clusters. | |
| 298 The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | |
| 299 in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | |
| 300 | |
| 301 Args: | |
| 302 distortions (list): List of distortion values for different numbers of clusters. | |
| 303 k_min (int): The minimum number of clusters considered. | |
| 304 k_max (int): The maximum number of clusters considered. | |
| 305 | |
| 306 Returns: | |
| 307 None | |
| 308 """ | |
| 309 plt.figure(0) | |
| 310 x = list(range(k_min, k_max + 1)) | |
| 311 x.insert(0, 1) | |
| 312 plt.plot(x, distortions, marker = 'o') | |
| 313 plt.xlabel('Number of clusters (k)') | |
| 314 plt.ylabel('Distortion') | |
| 315 s = f'{args.output_path}/elbow_plot.png' | |
| 316 fig = plt.gcf() | |
| 317 fig.set_size_inches(18.5, 10.5, forward = True) | |
| 318 fig.savefig(s, dpi=100) | |
| 319 | |
| 320 | |
| 321 ############################## silhouette plot ############################### | |
| 322 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | |
| 323 """ | |
| 324 Generate a silhouette plot for the clustering results. | |
| 325 The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | |
| 326 The silhouette coefficient ranges from -1 to 1, where: | |
| 327 - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | |
| 328 - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | |
| 329 - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | |
| 330 | |
| 331 Args: | |
| 332 dataset (pandas.DataFrame): The dataset used for clustering. | |
| 333 labels (list): The cluster labels assigned to each data point. | |
| 334 n_clusters (int): The number of clusters. | |
| 335 path (str): The path to save the silhouette plot image. | |
| 336 | |
| 337 Returns: | |
| 338 None | |
| 339 """ | |
| 340 if n_clusters == 1: | |
| 341 return None | |
| 342 | |
| 343 silhouette_avg = silhouette_score(dataset, labels) | |
| 344 warning("For n_clusters = " + str(n_clusters) + | |
| 345 " The average silhouette_score is: " + str(silhouette_avg)) | |
| 346 | |
| 347 plt.close('all') | |
| 348 # Create a subplot with 1 row and 2 columns | |
| 349 fig, (ax1) = plt.subplots(1, 1) | |
| 350 | |
| 351 fig.set_size_inches(18, 7) | |
| 352 | |
| 353 # The 1st subplot is the silhouette plot | |
| 354 # The silhouette coefficient can range from -1, 1 but in this example all | |
| 355 # lie within [-0.1, 1] | |
| 356 ax1.set_xlim([-1, 1]) | |
| 357 # The (n_clusters+1)*10 is for inserting blank space between silhouette | |
| 358 # plots of individual clusters, to demarcate them clearly. | |
| 359 ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | |
| 360 | |
| 361 # Compute the silhouette scores for each sample | |
| 362 sample_silhouette_values = silhouette_samples(dataset, labels) | |
| 363 | |
| 364 y_lower = 10 | |
| 365 for i in range(n_clusters): | |
| 366 # Aggregate the silhouette scores for samples belonging to | |
| 367 # cluster i, and sort them | |
| 368 ith_cluster_silhouette_values = \ | |
| 369 sample_silhouette_values[labels == i] | |
| 370 | |
| 371 ith_cluster_silhouette_values.sort() | |
| 372 | |
| 373 size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
| 374 y_upper = y_lower + size_cluster_i | |
| 375 | |
| 376 color = cm.nipy_spectral(float(i) / n_clusters) | |
| 377 ax1.fill_betweenx(np.arange(y_lower, y_upper), | |
| 378 0, ith_cluster_silhouette_values, | |
| 379 facecolor=color, edgecolor=color, alpha=0.7) | |
| 380 | |
| 381 # Label the silhouette plots with their cluster numbers at the middle | |
| 382 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | |
| 383 | |
| 384 # Compute the new y_lower for next plot | |
| 385 y_lower = y_upper + 10 # 10 for the 0 samples | |
| 386 | |
| 387 ax1.set_title("The silhouette plot for the various clusters.") | |
| 388 ax1.set_xlabel("The silhouette coefficient values") | |
| 389 ax1.set_ylabel("Cluster label") | |
| 390 | |
| 391 # The vertical line for average silhouette score of all the values | |
| 392 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | |
| 393 | |
| 394 ax1.set_yticks([]) # Clear the yaxis labels / ticks | |
| 395 ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | |
| 396 | |
| 397 | |
| 398 plt.suptitle(("Silhouette analysis for clustering on sample data " | |
| 399 "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | |
| 400 | |
| 401 | |
| 402 plt.savefig(path, bbox_inches='tight') | |
| 403 | |
| 404 ######################## dbscan ############################################## | |
| 405 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | |
| 406 """ | |
| 407 Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | |
| 408 | |
| 409 Args: | |
| 410 dataset (pandas.DataFrame): The dataset to be clustered. | |
| 411 eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | |
| 412 min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | |
| 413 best_cluster (str): The file path to save the output of the best cluster. | |
| 414 | |
| 415 Returns: | |
| 416 None | |
| 417 """ | |
| 418 if not os.path.exists(args.output_path): | |
| 419 os.makedirs(args.output_path) | |
| 420 | |
| 421 if eps is not None: | |
| 422 clusterer = DBSCAN(eps = eps, min_samples = min_samples) | |
| 423 else: | |
| 424 clusterer = DBSCAN() | |
| 425 | |
| 426 clustering = clusterer.fit(dataset) | |
| 427 | |
| 428 core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | |
| 429 core_samples_mask[clustering.core_sample_indices_] = True | |
| 430 labels = clustering.labels_ | |
| 431 | |
| 432 # Number of clusters in labels, ignoring noise if present. | |
| 433 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
| 434 | |
| 435 | |
| 436 labels = labels | |
| 437 predict = [x+1 for x in labels] | |
| 438 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 439 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 440 | |
| 441 | |
| 442 ########################## hierachical ####################################### | |
| 443 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | |
| 444 """ | |
| 445 Perform hierarchical agglomerative clustering on the given dataset. | |
| 446 | |
| 447 Args: | |
| 448 dataset (pandas.DataFrame): The dataset to be clustered. | |
| 449 k_min (int): The minimum number of clusters to consider. | |
| 450 k_max (int): The maximum number of clusters to consider. | |
| 451 best_cluster (str): The file path to save the output of the best cluster. | |
| 452 silhouette (str): Whether to generate silhouette plots ('True' or 'False'). | |
| 453 | |
| 454 Returns: | |
| 455 None | |
| 456 """ | |
| 457 if not os.path.exists(args.output_path): | |
| 458 os.makedirs(args.output_path) | |
| 459 | |
| 460 plt.figure(figsize=(10, 7)) | |
| 461 plt.title("Customer Dendograms") | |
| 462 shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | |
| 463 fig = plt.gcf() | |
| 464 fig.savefig(f'{args.output_path}/dendogram.png', dpi=200) | |
| 465 | |
| 466 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 467 | |
| 468 scores = [] | |
| 469 labels = [] | |
| 470 | |
| 471 n_classi = dataset.shape[0] | |
| 472 | |
| 473 for n_clusters in range_n_clusters: | |
| 474 cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | |
| 475 cluster.fit_predict(dataset) | |
| 476 cluster_labels = cluster.labels_ | |
| 477 labels.append(cluster_labels) | |
| 478 write_to_csv(dataset, cluster_labels, f'{args.output_path}/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | |
| 479 | |
| 480 best = max_index(scores) + k_min | |
| 481 | |
| 482 for i in range(len(labels)): | |
| 483 prefix = '' | |
| 484 if (i + k_min == best): | |
| 485 prefix = '_BEST' | |
| 486 if silhouette == 'true': | |
| 487 silhouette_draw(dataset, labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 488 | |
| 489 for i in range(len(labels)): | |
| 490 if (i + k_min == best): | |
| 491 labels = labels[i] | |
| 492 predict = [x+1 for x in labels] | |
| 493 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 494 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 495 | |
| 496 | |
| 497 ############################# main ########################################### | |
| 498 def main(args_in:List[str] = None) -> None: | |
| 499 """ | |
| 500 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 501 | |
| 502 Returns: | |
| 503 None | |
| 504 """ | |
| 505 global args | |
| 506 args = process_args(args_in) | |
| 507 | |
| 508 if not os.path.exists(args.output_path): | |
| 509 os.makedirs(args.output_path) | |
| 510 | |
| 511 #Data read | |
| 512 | |
| 513 X = read_dataset(args.input) | |
| 514 X = X.iloc[:, 1:] | |
| 515 X = pd.DataFrame.to_dict(X, orient='list') | |
| 516 X = rewrite_input(X) | |
| 517 X = pd.DataFrame.from_dict(X, orient = 'index') | |
| 518 | |
| 519 for i in X.columns: | |
| 520 if any(val is None or np.isnan(val) for val in X[i]): | |
| 521 X = X.drop(columns=[i]) | |
| 522 | |
| 523 if args.scaling == "true": | |
| 524 list_to_remove = [] | |
| 525 toll_std=1e-8 | |
| 526 for i in X.columns: | |
| 527 mean_i = X[i].mean() | |
| 528 std_i = X[i].std() | |
| 529 if std_i >toll_std: | |
| 530 #scaling with mean 0 and std 1 | |
| 531 X[i] = (X[i]-mean_i)/std_i | |
| 532 else: | |
| 533 #remove feature because std = 0 during clustering | |
| 534 list_to_remove.append(i) | |
| 535 if len(list_to_remove)>0: | |
| 536 X = X.drop(columns=list_to_remove) | |
| 537 | |
| 538 if args.k_max != None: | |
| 539 numero_classi = X.shape[0] | |
| 540 while args.k_max >= numero_classi: | |
| 541 err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | |
| 542 warning(err) | |
| 543 args.k_max = args.k_max - 1 | |
| 544 | |
| 545 | |
| 546 if args.cluster_type == 'kmeans': | |
| 547 kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | |
| 548 | |
| 549 if args.cluster_type == 'dbscan': | |
| 550 dbscan(X, args.eps, args.min_samples, args.best_cluster) | |
| 551 | |
| 552 if args.cluster_type == 'hierarchy': | |
| 553 hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | |
| 554 | |
| 555 ############################################################################## | |
| 556 if __name__ == "__main__": | |
| 557 main() |
