Mercurial > repos > bimib > cobraxy
comparison COBRAxy/flux_simulation.py @ 210:3ca179b83574 draft
Uploaded
author | luca_milaz |
---|---|
date | Thu, 28 Nov 2024 14:07:11 +0000 |
parents | c2aa3034aac2 |
children |
comparison
equal
deleted
inserted
replaced
209:00a66b9bc29e | 210:3ca179b83574 |
---|---|
236 bounds_df = read_dataset(bounds_path, "bounds dataset") | 236 bounds_df = read_dataset(bounds_path, "bounds dataset") |
237 for rxn_index, row in bounds_df.iterrows(): | 237 for rxn_index, row in bounds_df.iterrows(): |
238 model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 238 model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound |
239 model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 239 model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound |
240 | 240 |
241 #name = '.'.join(cell_name.rsplit('.', 1)[:-1]) | |
242 name = cell_name | |
243 | 241 |
244 if ARGS.algorithm == 'OPTGP': | 242 if ARGS.algorithm == 'OPTGP': |
245 OPTGP_sampler(model_input, name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 243 OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) |
246 | 244 |
247 elif ARGS.algorithm == 'CBS': | 245 elif ARGS.algorithm == 'CBS': |
248 CBS_sampler(model_input, name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 246 CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) |
249 | 247 |
250 df_mean, df_median, df_quantiles = fluxes_statistics(name, ARGS.output_types) | 248 df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) |
251 | 249 |
252 if("fluxes" not in ARGS.output_types): | 250 if("fluxes" not in ARGS.output_types): |
253 os.remove(ARGS.output_path + "/" + name + '.csv') | 251 os.remove(ARGS.output_path + "/" + cell_name + '.csv') |
254 | 252 |
255 returnList = [] | 253 returnList = [] |
256 returnList.append(df_mean) | 254 returnList.append(df_mean) |
257 returnList.append(df_median) | 255 returnList.append(df_median) |
258 returnList.append(df_quantiles) | 256 returnList.append(df_quantiles) |
259 | 257 |
260 df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, name, ARGS.output_type_analysis) | 258 df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) |
261 | 259 |
262 if("pFBA" in ARGS.output_type_analysis): | 260 if("pFBA" in ARGS.output_type_analysis): |
263 returnList.append(df_pFBA) | 261 returnList.append(df_pFBA) |
264 if("FVA" in ARGS.output_type_analysis): | 262 if("FVA" in ARGS.output_type_analysis): |
265 returnList.append(df_FVA) | 263 returnList.append(df_FVA) |