Mercurial > repos > bimib > cobraxy
comparison COBRAxy/custom_data_generator.py @ 4:41f35c2f0c7b draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 18 Sep 2024 10:59:10 +0000 |
parents | |
children | 20c30b1a032d |
comparison
equal
deleted
inserted
replaced
3:1f3ac6fd9867 | 4:41f35c2f0c7b |
---|---|
1 import os | |
2 import csv | |
3 import cobra | |
4 import pickle | |
5 import argparse | |
6 import pandas as pd | |
7 import utils.general_utils as utils | |
8 import utils.rule_parsing as rulesUtils | |
9 from typing import Optional, Tuple, Union, Dict | |
10 import utils.reaction_parsing as reactionUtils | |
11 | |
12 ARGS : argparse.Namespace | |
13 def process_args() -> argparse.Namespace: | |
14 """ | |
15 Interfaces the script of a module with its frontend, making the user's choices for | |
16 various parameters available as values in code. | |
17 | |
18 Args: | |
19 args : Always obtained (in file) from sys.argv | |
20 | |
21 Returns: | |
22 Namespace : An object containing the parsed arguments | |
23 """ | |
24 parser = argparse.ArgumentParser( | |
25 usage = "%(prog)s [options]", | |
26 description = "generate custom data from a given model") | |
27 | |
28 parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log") | |
29 parser.add_argument("-id", "--input", type = str, required = True, help = "Input model") | |
30 parser.add_argument("-mn", "--name", type = str, required = True, help = "Input model name") | |
31 # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in | |
32 | |
33 parser.add_argument( | |
34 "-of", "--output_format", | |
35 # vvv I have to use .fromExt because enums in python are the plague and have been implemented by a chimpanzee. | |
36 type = utils.FileFormat.fromExt, default = utils.FileFormat.PICKLE, | |
37 choices = [utils.FileFormat.CSV, utils.FileFormat.PICKLE], | |
38 # ^^^ Not all variants are valid here, otherwise list(utils.FileFormat) would be best. | |
39 required = True, help = "Extension of all output files") | |
40 | |
41 argsNamespace = parser.parse_args() | |
42 argsNamespace.out_dir = "result" | |
43 # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection | |
44 | |
45 return argsNamespace | |
46 | |
47 ################################- INPUT DATA LOADING -################################ | |
48 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | |
49 """ | |
50 Loads a custom model from a file, either in JSON or XML format. | |
51 | |
52 Args: | |
53 file_path : The path to the file containing the custom model. | |
54 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | |
55 | |
56 Raises: | |
57 DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | |
58 | |
59 Returns: | |
60 cobra.Model : the model, if successfully opened. | |
61 """ | |
62 ext = ext if ext else file_path.ext | |
63 try: | |
64 if ext is utils.FileFormat.XML: | |
65 return cobra.io.read_sbml_model(file_path.show()) | |
66 | |
67 if ext is utils.FileFormat.JSON: | |
68 return cobra.io.load_json_model(file_path.show()) | |
69 | |
70 except Exception as e: raise utils.DataErr(file_path, e.__str__()) | |
71 raise utils.DataErr(file_path, | |
72 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | |
73 | |
74 ################################- DATA GENERATION -################################ | |
75 ReactionId = str | |
76 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | |
77 """ | |
78 Generates a dictionary mapping reaction ids to rules from the model. | |
79 | |
80 Args: | |
81 model : the model to derive data from. | |
82 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | |
83 | |
84 Returns: | |
85 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | |
86 Dict[ReactionId, str] : the generated dictionary of raw rules. | |
87 """ | |
88 # Is the below approach convoluted? yes | |
89 # Ok but is it inefficient? probably | |
90 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | |
91 _ruleGetter = lambda reaction : reaction.gene_reaction_rule | |
92 ruleExtractor = (lambda reaction : | |
93 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | |
94 | |
95 return { | |
96 reaction.id : ruleExtractor(reaction) | |
97 for reaction in model.reactions | |
98 if reaction.gene_reaction_rule } | |
99 | |
100 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | |
101 """ | |
102 Generates a dictionary mapping reaction ids to reaction formulas from the model. | |
103 | |
104 Args: | |
105 model : the model to derive data from. | |
106 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | |
107 | |
108 Returns: | |
109 Dict[ReactionId, str] : the generated dictionary. | |
110 """ | |
111 | |
112 unparsedReactions = { | |
113 reaction.id : reaction.reaction | |
114 for reaction in model.reactions | |
115 if reaction.reaction | |
116 } | |
117 | |
118 if not asParsed: return unparsedReactions | |
119 | |
120 return reactionUtils.create_reaction_dict(unparsedReactions) | |
121 | |
122 def get_medium(model:cobra.Model) -> pd.DataFrame: | |
123 trueMedium=[] | |
124 for r in model.reactions: | |
125 positiveCoeff=0 | |
126 for m in r.metabolites: | |
127 if r.get_coefficient(m.id)>0: | |
128 positiveCoeff=1; | |
129 if (positiveCoeff==0 and r.lower_bound<0): | |
130 trueMedium.append(r.id) | |
131 | |
132 df_medium = pd.DataFrame() | |
133 df_medium["reaction"] = trueMedium | |
134 return df_medium | |
135 | |
136 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | |
137 | |
138 rxns = [] | |
139 for reaction in model.reactions: | |
140 rxns.append(reaction.id) | |
141 | |
142 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | |
143 | |
144 for reaction in model.reactions: | |
145 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | |
146 return bounds | |
147 | |
148 | |
149 ###############################- FILE SAVING -################################ | |
150 def save_as_csv(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | |
151 """ | |
152 Saves any dictionary-shaped data in a .csv file created at the given file_path. | |
153 | |
154 Args: | |
155 data : the data to be written to the file. | |
156 file_path : the path to the .csv file. | |
157 fieldNames : the names of the fields (columns) in the .csv file. | |
158 | |
159 Returns: | |
160 None | |
161 """ | |
162 with open(file_path.show(), 'w', newline='') as csvfile: | |
163 writer = csv.DictWriter(csvfile, fieldnames = fieldNames) | |
164 writer.writeheader() | |
165 | |
166 for key, value in data.items(): | |
167 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
168 | |
169 ###############################- ENTRY POINT -################################ | |
170 def main() -> None: | |
171 """ | |
172 Initializes everything and sets the program in motion based on the fronted input arguments. | |
173 | |
174 Returns: | |
175 None | |
176 """ | |
177 # get args from frontend (related xml) | |
178 global ARGS | |
179 ARGS = process_args() | |
180 | |
181 # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this! | |
182 if os.path.isdir(ARGS.out_dir) == False: os.makedirs(ARGS.out_dir) | |
183 | |
184 # load custom model | |
185 model = load_custom_model( | |
186 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | |
187 | |
188 # generate data and save it in the desired format and in a location galaxy understands | |
189 # (it should show up as a collection in the history) | |
190 rulesPath = utils.FilePath("rules", ARGS.output_format, prefix = ARGS.out_dir) | |
191 reactionsPath = utils.FilePath("reactions", ARGS.output_format, prefix = ARGS.out_dir) | |
192 boundsPath = utils.FilePath("bounds", ARGS.output_format, prefix = ARGS.out_dir) | |
193 mediumPath = utils.FilePath("medium", ARGS.output_format, prefix = ARGS.out_dir) | |
194 | |
195 if ARGS.output_format is utils.FileFormat.PICKLE: | |
196 rules = generate_rules(model, asParsed = True) | |
197 reactions = generate_reactions(model, asParsed = True) | |
198 bounds = generate_bounds(model) | |
199 medium = get_medium(model) | |
200 utils.writePickle(rulesPath, rules) | |
201 utils.writePickle(reactionsPath, reactions) | |
202 utils.writePickle(boundsPath, bounds) | |
203 utils.writePickle(mediumPath, medium) | |
204 bounds.to_pickle(boundsPath.show()) | |
205 medium.to_pickle(mediumPath.show()) | |
206 | |
207 elif ARGS.output_format is utils.FileFormat.CSV: | |
208 rules = generate_rules(model, asParsed = False) | |
209 reactions = generate_reactions(model, asParsed = False) | |
210 bounds = generate_bounds(model) | |
211 medium = get_medium(model) | |
212 save_as_csv(rules, rulesPath, ("ReactionID", "Rule")) | |
213 save_as_csv(reactions, reactionsPath, ("ReactionID", "Reaction")) | |
214 bounds.to_csv(boundsPath.show()) | |
215 medium.to_csv(mediumPath.show()) | |
216 | |
217 | |
218 # ^ Please if anyone works on this after updating python to 3.12 change the if/elif into a match statement!! | |
219 | |
220 if __name__ == '__main__': | |
221 main() |