comparison COBRAxy/flux_simulation.py @ 4:41f35c2f0c7b draft

Uploaded
author luca_milaz
date Wed, 18 Sep 2024 10:59:10 +0000
parents
children 74b383211ab5
comparison
equal deleted inserted replaced
3:1f3ac6fd9867 4:41f35c2f0c7b
1 import argparse
2 import utils.general_utils as utils
3 from typing import Optional, List
4 import os
5 import numpy as np
6 import pandas as pd
7 import cobra
8 import utils.CBS_backend as CBS_backend
9 from joblib import Parallel, delayed, cpu_count
10 from cobra.sampling import OptGPSampler
11 import sys
12
13 ################################# process args ###############################
14 def process_args(args :List[str]) -> argparse.Namespace:
15 """
16 Processes command-line arguments.
17
18 Args:
19 args (list): List of command-line arguments.
20
21 Returns:
22 Namespace: An object containing parsed arguments.
23 """
24 parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
25 description = 'process some value\'s')
26
27 parser.add_argument('-ol', '--out_log',
28 help = "Output log")
29
30 parser.add_argument('-td', '--tool_dir',
31 type = str,
32 required = True,
33 help = 'your tool directory')
34
35 parser.add_argument('-in', '--input',
36 required = True,
37 type=str,
38 help = 'inputs bounds')
39
40 parser.add_argument('-ni', '--names',
41 required = True,
42 type=str,
43 help = 'cell names')
44
45 parser.add_argument(
46 '-ms', '--model_selector',
47 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom],
48 help = 'chose which type of model you want use')
49
50 parser.add_argument("-mo", "--model", type = str)
51
52 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name")
53
54 parser.add_argument('-a', '--algorithm',
55 type = str,
56 choices = ['OPTGP', 'CBS'],
57 required = True,
58 help = 'choose sampling algorithm')
59
60 parser.add_argument('-th', '--thinning',
61 type = int,
62 default= 100,
63 required=False,
64 help = 'choose thinning')
65
66 parser.add_argument('-ns', '--n_samples',
67 type = int,
68 required = True,
69 help = 'choose how many samples')
70
71 parser.add_argument('-sd', '--seed',
72 type = int,
73 required = True,
74 help = 'seed')
75
76 parser.add_argument('-nb', '--n_batches',
77 type = int,
78 required = True,
79 help = 'choose how many batches')
80
81 parser.add_argument('-ot', '--output_type',
82 type = str,
83 required = True,
84 help = 'output type')
85
86 parser.add_argument('-ota', '--output_type_analysis',
87 type = str,
88 required = False,
89 help = 'output type analysis')
90
91 ARGS = parser.parse_args()
92 return ARGS
93
94 ########################### warning ###########################################
95 def warning(s :str) -> None:
96 """
97 Log a warning message to an output log file and print it to the console.
98
99 Args:
100 s (str): The warning message to be logged and printed.
101
102 Returns:
103 None
104 """
105 with open(ARGS.out_log, 'a') as log:
106 log.write(s + "\n\n")
107 print(s)
108
109
110 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None:
111 dataset.index.name = 'Reactions'
112 dataset.to_csv(ARGS.output_folder + name + ".csv", sep = '\t', index = keep_index)
113
114 ############################ dataset input ####################################
115 def read_dataset(data :str, name :str) -> pd.DataFrame:
116 """
117 Read a dataset from a CSV file and return it as a pandas DataFrame.
118
119 Args:
120 data (str): Path to the CSV file containing the dataset.
121 name (str): Name of the dataset, used in error messages.
122
123 Returns:
124 pandas.DataFrame: DataFrame containing the dataset.
125
126 Raises:
127 pd.errors.EmptyDataError: If the CSV file is empty.
128 sys.exit: If the CSV file has the wrong format, the execution is aborted.
129 """
130 try:
131 dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
132 except pd.errors.EmptyDataError:
133 sys.exit('Execution aborted: wrong format of ' + name + '\n')
134 if len(dataset.columns) < 2:
135 sys.exit('Execution aborted: wrong format of ' + name + '\n')
136 return dataset
137
138
139
140 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None:
141 """
142 Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
143
144 Args:
145 model (cobra.Model): The COBRA model to sample from.
146 model_name (str): The name of the model, used in naming output files.
147 n_samples (int, optional): Number of samples per batch. Default is 1000.
148 thinning (int, optional): Thinning parameter for the sampler. Default is 100.
149 n_batches (int, optional): Number of batches to run. Default is 1.
150 seed (int, optional): Random seed for reproducibility. Default is 0.
151
152 Returns:
153 None
154 """
155
156 for i in range(0, n_batches):
157 optgp = OptGPSampler(model, thinning, seed)
158 samples = optgp.sample(n_samples)
159 samples.to_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv', index=False)
160 seed+=1
161 samplesTotal = pd.DataFrame()
162 for i in range(0, n_batches):
163 samples_batch = pd.read_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv')
164 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True)
165
166 write_to_file(samplesTotal.T, model_name, True)
167
168 for i in range(0, n_batches):
169 os.remove(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv')
170 pass
171
172
173 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None:
174 """
175 Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
176
177 Args:
178 model (cobra.Model): The COBRA model to sample from.
179 model_name (str): The name of the model, used in naming output files.
180 n_samples (int, optional): Number of samples per batch. Default is 1000.
181 n_batches (int, optional): Number of batches to run. Default is 1.
182 seed (int, optional): Random seed for reproducibility. Default is 0.
183
184 Returns:
185 None
186 """
187
188 df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6)
189
190 df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed)
191
192 for i in range(0, n_batches):
193 samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples))
194 try:
195 CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples)
196 except Exception as e:
197 utils.logWarning(
198 "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e),
199 ARGS.out_log)
200 CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples],
201 samples)
202 utils.logWarning(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log)
203 samples.to_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv', index=False)
204
205 samplesTotal = pd.DataFrame()
206 for i in range(0, n_batches):
207 samples_batch = pd.read_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv')
208 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True)
209
210 write_to_file(samplesTotal.T, model_name, True)
211
212 for i in range(0, n_batches):
213 os.remove(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv')
214 pass
215
216
217 def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]:
218 """
219 Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm.
220
221 Args:
222 model_input_original (cobra.Model): The original COBRA model.
223 bounds_path (str): Path to the CSV file containing the bounds dataset.
224 cell_name (str): Name of the cell, used to generate filenames for output.
225
226 Returns:
227 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
228 """
229
230 model_input = model_input_original.copy()
231 bounds_df = read_dataset(bounds_path, "bounds dataset")
232 for rxn_index, row in bounds_df.iterrows():
233 model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
234 model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
235
236 name = cell_name.split('.')[0]
237
238 if ARGS.algorithm == 'OPTGP':
239 OPTGP_sampler(model_input, name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
240
241 elif ARGS.algorithm == 'CBS':
242 CBS_sampler(model_input, name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
243
244 df_mean, df_median, df_quantiles = fluxes_statistics(name, ARGS.output_types)
245
246 if("fluxes" not in ARGS.output_types):
247 os.remove(ARGS.output_folder + name + '.csv')
248
249 returnList = []
250 returnList.append(df_mean)
251 returnList.append(df_median)
252 returnList.append(df_quantiles)
253
254 df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, name, ARGS.output_type_analysis)
255
256 if("pFBA" in ARGS.output_type_analysis):
257 returnList.append(df_pFBA)
258 if("FVA" in ARGS.output_type_analysis):
259 returnList.append(df_FVA)
260 if("sensitivity" in ARGS.output_type_analysis):
261 returnList.append(df_sensitivity)
262
263 return returnList
264
265 def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]:
266 """
267 Computes statistics (mean, median, quantiles) for the fluxes.
268
269 Args:
270 model_name (str): Name of the model, used in filename for input.
271 output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
272
273 Returns:
274 List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
275 """
276
277 df_mean = pd.DataFrame()
278 df_median= pd.DataFrame()
279 df_quantiles= pd.DataFrame()
280
281 df_samples = pd.read_csv(ARGS.output_folder + model_name + '.csv', sep = '\t', index_col = 0).T
282 df_samples = df_samples.round(8)
283
284 for output_type in output_types:
285 if(output_type == "mean"):
286 df_mean = df_samples.mean()
287 df_mean = df_mean.to_frame().T
288 df_mean = df_mean.reset_index(drop=True)
289 df_mean.index = [model_name]
290 elif(output_type == "median"):
291 df_median = df_samples.median()
292 df_median = df_median.to_frame().T
293 df_median = df_median.reset_index(drop=True)
294 df_median.index = [model_name]
295 elif(output_type == "quantiles"):
296 newRow = []
297 cols = []
298 for rxn in df_samples.columns:
299 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
300 newRow.append(quantiles[0.25])
301 cols.append(rxn + "_q1")
302 newRow.append(quantiles[0.5])
303 cols.append(rxn + "_q2")
304 newRow.append(quantiles[0.75])
305 cols.append(rxn + "_q3")
306 df_quantiles = pd.DataFrame(columns=cols)
307 df_quantiles.loc[0] = newRow
308 df_quantiles = df_quantiles.reset_index(drop=True)
309 df_quantiles.index = [model_name]
310
311 return df_mean, df_median, df_quantiles
312
313 def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]:
314 """
315 Performs flux analysis including pFBA, FVA, and sensitivity analysis.
316
317 Args:
318 model (cobra.Model): The COBRA model to analyze.
319 model_name (str): Name of the model, used in filenames for output.
320 output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
321
322 Returns:
323 List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
324 """
325
326 df_pFBA = pd.DataFrame()
327 df_FVA= pd.DataFrame()
328 df_sensitivity= pd.DataFrame()
329
330 for output_type in output_types:
331 if(output_type == "pFBA"):
332 model.objective = "Biomass"
333 solution = cobra.flux_analysis.pfba(model)
334 fluxes = solution.fluxes
335 df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist()
336 df_pFBA = df_pFBA.reset_index(drop=True)
337 df_pFBA.index = [model_name]
338 df_pFBA = df_pFBA.astype(float).round(6)
339 elif(output_type == "FVA"):
340 fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
341 columns = []
342 for rxn in fva.index.to_list():
343 columns.append(rxn + "_min")
344 columns.append(rxn + "_max")
345 df_FVA= pd.DataFrame(columns = columns)
346 for index_rxn, row in fva.iterrows():
347 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
348 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
349 df_FVA = df_FVA.reset_index(drop=True)
350 df_FVA.index = [model_name]
351 df_FVA = df_FVA.astype(float).round(6)
352 elif(output_type == "sensitivity"):
353 model.objective = "Biomass"
354 solution_original = model.optimize().objective_value
355 reactions = model.reactions
356 single = cobra.flux_analysis.single_reaction_deletion(model)
357 newRow = []
358 df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
359 for rxn in reactions:
360 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
361 df_sensitivity.loc[model_name] = newRow
362 df_sensitivity = df_sensitivity.astype(float).round(6)
363 return df_pFBA, df_FVA, df_sensitivity
364
365 ############################# main ###########################################
366 def main() -> None:
367 """
368 Initializes everything and sets the program in motion based on the fronted input arguments.
369
370 Returns:
371 None
372 """
373 if not os.path.exists('flux_simulation/'):
374 os.makedirs('flux_simulation/')
375
376 num_processors = cpu_count()
377
378 global ARGS
379 ARGS = process_args(sys.argv)
380
381 ARGS.output_folder = 'flux_simulation/'
382
383
384 model_type :utils.Model = ARGS.model_selector
385 if model_type is utils.Model.Custom:
386 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext)
387 else:
388 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir)
389
390 ARGS.bounds = ARGS.input.split(",")
391 ARGS.bounds_name = ARGS.names.split(",")
392 ARGS.output_types = ARGS.output_type.split(",")
393 ARGS.output_type_analysis = ARGS.output_type_analysis.split(",")
394
395
396 results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name))
397
398 all_mean = pd.concat([result[0] for result in results], ignore_index=False)
399 all_median = pd.concat([result[1] for result in results], ignore_index=False)
400 all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
401
402 if("mean" in ARGS.output_types):
403 all_mean = all_mean.fillna(0.0)
404 all_mean = all_mean.sort_index()
405 write_to_file(all_mean.T, "mean", True)
406
407 if("median" in ARGS.output_types):
408 all_median = all_median.fillna(0.0)
409 all_median = all_median.sort_index()
410 write_to_file(all_median.T, "median", True)
411
412 if("quantiles" in ARGS.output_types):
413 all_quantiles = all_quantiles.fillna(0.0)
414 all_quantiles = all_quantiles.sort_index()
415 write_to_file(all_quantiles.T, "quantiles", True)
416
417 index_result = 3
418 if("pFBA" in ARGS.output_type_analysis):
419 all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
420 all_pFBA = all_pFBA.sort_index()
421 write_to_file(all_pFBA.T, "pFBA", True)
422 index_result+=1
423 if("FVA" in ARGS.output_type_analysis):
424 all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False)
425 all_FVA = all_FVA.sort_index()
426 write_to_file(all_FVA.T, "FVA", True)
427 index_result+=1
428 if("sensitivity" in ARGS.output_type_analysis):
429 all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
430 all_sensitivity = all_sensitivity.sort_index()
431 write_to_file(all_sensitivity.T, "sensitivity", True)
432
433 pass
434
435 ##############################################################################
436 if __name__ == "__main__":
437 main()