Mercurial > repos > bimib > cobraxy
comparison COBRAxy/flux_simulation.py @ 4:41f35c2f0c7b draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 18 Sep 2024 10:59:10 +0000 |
parents | |
children | 74b383211ab5 |
comparison
equal
deleted
inserted
replaced
3:1f3ac6fd9867 | 4:41f35c2f0c7b |
---|---|
1 import argparse | |
2 import utils.general_utils as utils | |
3 from typing import Optional, List | |
4 import os | |
5 import numpy as np | |
6 import pandas as pd | |
7 import cobra | |
8 import utils.CBS_backend as CBS_backend | |
9 from joblib import Parallel, delayed, cpu_count | |
10 from cobra.sampling import OptGPSampler | |
11 import sys | |
12 | |
13 ################################# process args ############################### | |
14 def process_args(args :List[str]) -> argparse.Namespace: | |
15 """ | |
16 Processes command-line arguments. | |
17 | |
18 Args: | |
19 args (list): List of command-line arguments. | |
20 | |
21 Returns: | |
22 Namespace: An object containing parsed arguments. | |
23 """ | |
24 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
25 description = 'process some value\'s') | |
26 | |
27 parser.add_argument('-ol', '--out_log', | |
28 help = "Output log") | |
29 | |
30 parser.add_argument('-td', '--tool_dir', | |
31 type = str, | |
32 required = True, | |
33 help = 'your tool directory') | |
34 | |
35 parser.add_argument('-in', '--input', | |
36 required = True, | |
37 type=str, | |
38 help = 'inputs bounds') | |
39 | |
40 parser.add_argument('-ni', '--names', | |
41 required = True, | |
42 type=str, | |
43 help = 'cell names') | |
44 | |
45 parser.add_argument( | |
46 '-ms', '--model_selector', | |
47 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
48 help = 'chose which type of model you want use') | |
49 | |
50 parser.add_argument("-mo", "--model", type = str) | |
51 | |
52 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
53 | |
54 parser.add_argument('-a', '--algorithm', | |
55 type = str, | |
56 choices = ['OPTGP', 'CBS'], | |
57 required = True, | |
58 help = 'choose sampling algorithm') | |
59 | |
60 parser.add_argument('-th', '--thinning', | |
61 type = int, | |
62 default= 100, | |
63 required=False, | |
64 help = 'choose thinning') | |
65 | |
66 parser.add_argument('-ns', '--n_samples', | |
67 type = int, | |
68 required = True, | |
69 help = 'choose how many samples') | |
70 | |
71 parser.add_argument('-sd', '--seed', | |
72 type = int, | |
73 required = True, | |
74 help = 'seed') | |
75 | |
76 parser.add_argument('-nb', '--n_batches', | |
77 type = int, | |
78 required = True, | |
79 help = 'choose how many batches') | |
80 | |
81 parser.add_argument('-ot', '--output_type', | |
82 type = str, | |
83 required = True, | |
84 help = 'output type') | |
85 | |
86 parser.add_argument('-ota', '--output_type_analysis', | |
87 type = str, | |
88 required = False, | |
89 help = 'output type analysis') | |
90 | |
91 ARGS = parser.parse_args() | |
92 return ARGS | |
93 | |
94 ########################### warning ########################################### | |
95 def warning(s :str) -> None: | |
96 """ | |
97 Log a warning message to an output log file and print it to the console. | |
98 | |
99 Args: | |
100 s (str): The warning message to be logged and printed. | |
101 | |
102 Returns: | |
103 None | |
104 """ | |
105 with open(ARGS.out_log, 'a') as log: | |
106 log.write(s + "\n\n") | |
107 print(s) | |
108 | |
109 | |
110 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None: | |
111 dataset.index.name = 'Reactions' | |
112 dataset.to_csv(ARGS.output_folder + name + ".csv", sep = '\t', index = keep_index) | |
113 | |
114 ############################ dataset input #################################### | |
115 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
116 """ | |
117 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
118 | |
119 Args: | |
120 data (str): Path to the CSV file containing the dataset. | |
121 name (str): Name of the dataset, used in error messages. | |
122 | |
123 Returns: | |
124 pandas.DataFrame: DataFrame containing the dataset. | |
125 | |
126 Raises: | |
127 pd.errors.EmptyDataError: If the CSV file is empty. | |
128 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
129 """ | |
130 try: | |
131 dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | |
132 except pd.errors.EmptyDataError: | |
133 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
134 if len(dataset.columns) < 2: | |
135 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
136 return dataset | |
137 | |
138 | |
139 | |
140 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None: | |
141 """ | |
142 Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | |
143 | |
144 Args: | |
145 model (cobra.Model): The COBRA model to sample from. | |
146 model_name (str): The name of the model, used in naming output files. | |
147 n_samples (int, optional): Number of samples per batch. Default is 1000. | |
148 thinning (int, optional): Thinning parameter for the sampler. Default is 100. | |
149 n_batches (int, optional): Number of batches to run. Default is 1. | |
150 seed (int, optional): Random seed for reproducibility. Default is 0. | |
151 | |
152 Returns: | |
153 None | |
154 """ | |
155 | |
156 for i in range(0, n_batches): | |
157 optgp = OptGPSampler(model, thinning, seed) | |
158 samples = optgp.sample(n_samples) | |
159 samples.to_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv', index=False) | |
160 seed+=1 | |
161 samplesTotal = pd.DataFrame() | |
162 for i in range(0, n_batches): | |
163 samples_batch = pd.read_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv') | |
164 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | |
165 | |
166 write_to_file(samplesTotal.T, model_name, True) | |
167 | |
168 for i in range(0, n_batches): | |
169 os.remove(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv') | |
170 pass | |
171 | |
172 | |
173 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None: | |
174 """ | |
175 Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | |
176 | |
177 Args: | |
178 model (cobra.Model): The COBRA model to sample from. | |
179 model_name (str): The name of the model, used in naming output files. | |
180 n_samples (int, optional): Number of samples per batch. Default is 1000. | |
181 n_batches (int, optional): Number of batches to run. Default is 1. | |
182 seed (int, optional): Random seed for reproducibility. Default is 0. | |
183 | |
184 Returns: | |
185 None | |
186 """ | |
187 | |
188 df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6) | |
189 | |
190 df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed) | |
191 | |
192 for i in range(0, n_batches): | |
193 samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples)) | |
194 try: | |
195 CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) | |
196 except Exception as e: | |
197 utils.logWarning( | |
198 "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e), | |
199 ARGS.out_log) | |
200 CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], | |
201 samples) | |
202 utils.logWarning(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log) | |
203 samples.to_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv', index=False) | |
204 | |
205 samplesTotal = pd.DataFrame() | |
206 for i in range(0, n_batches): | |
207 samples_batch = pd.read_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv') | |
208 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | |
209 | |
210 write_to_file(samplesTotal.T, model_name, True) | |
211 | |
212 for i in range(0, n_batches): | |
213 os.remove(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv') | |
214 pass | |
215 | |
216 | |
217 def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]: | |
218 """ | |
219 Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm. | |
220 | |
221 Args: | |
222 model_input_original (cobra.Model): The original COBRA model. | |
223 bounds_path (str): Path to the CSV file containing the bounds dataset. | |
224 cell_name (str): Name of the cell, used to generate filenames for output. | |
225 | |
226 Returns: | |
227 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | |
228 """ | |
229 | |
230 model_input = model_input_original.copy() | |
231 bounds_df = read_dataset(bounds_path, "bounds dataset") | |
232 for rxn_index, row in bounds_df.iterrows(): | |
233 model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | |
234 model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | |
235 | |
236 name = cell_name.split('.')[0] | |
237 | |
238 if ARGS.algorithm == 'OPTGP': | |
239 OPTGP_sampler(model_input, name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | |
240 | |
241 elif ARGS.algorithm == 'CBS': | |
242 CBS_sampler(model_input, name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | |
243 | |
244 df_mean, df_median, df_quantiles = fluxes_statistics(name, ARGS.output_types) | |
245 | |
246 if("fluxes" not in ARGS.output_types): | |
247 os.remove(ARGS.output_folder + name + '.csv') | |
248 | |
249 returnList = [] | |
250 returnList.append(df_mean) | |
251 returnList.append(df_median) | |
252 returnList.append(df_quantiles) | |
253 | |
254 df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, name, ARGS.output_type_analysis) | |
255 | |
256 if("pFBA" in ARGS.output_type_analysis): | |
257 returnList.append(df_pFBA) | |
258 if("FVA" in ARGS.output_type_analysis): | |
259 returnList.append(df_FVA) | |
260 if("sensitivity" in ARGS.output_type_analysis): | |
261 returnList.append(df_sensitivity) | |
262 | |
263 return returnList | |
264 | |
265 def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]: | |
266 """ | |
267 Computes statistics (mean, median, quantiles) for the fluxes. | |
268 | |
269 Args: | |
270 model_name (str): Name of the model, used in filename for input. | |
271 output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | |
272 | |
273 Returns: | |
274 List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | |
275 """ | |
276 | |
277 df_mean = pd.DataFrame() | |
278 df_median= pd.DataFrame() | |
279 df_quantiles= pd.DataFrame() | |
280 | |
281 df_samples = pd.read_csv(ARGS.output_folder + model_name + '.csv', sep = '\t', index_col = 0).T | |
282 df_samples = df_samples.round(8) | |
283 | |
284 for output_type in output_types: | |
285 if(output_type == "mean"): | |
286 df_mean = df_samples.mean() | |
287 df_mean = df_mean.to_frame().T | |
288 df_mean = df_mean.reset_index(drop=True) | |
289 df_mean.index = [model_name] | |
290 elif(output_type == "median"): | |
291 df_median = df_samples.median() | |
292 df_median = df_median.to_frame().T | |
293 df_median = df_median.reset_index(drop=True) | |
294 df_median.index = [model_name] | |
295 elif(output_type == "quantiles"): | |
296 newRow = [] | |
297 cols = [] | |
298 for rxn in df_samples.columns: | |
299 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | |
300 newRow.append(quantiles[0.25]) | |
301 cols.append(rxn + "_q1") | |
302 newRow.append(quantiles[0.5]) | |
303 cols.append(rxn + "_q2") | |
304 newRow.append(quantiles[0.75]) | |
305 cols.append(rxn + "_q3") | |
306 df_quantiles = pd.DataFrame(columns=cols) | |
307 df_quantiles.loc[0] = newRow | |
308 df_quantiles = df_quantiles.reset_index(drop=True) | |
309 df_quantiles.index = [model_name] | |
310 | |
311 return df_mean, df_median, df_quantiles | |
312 | |
313 def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]: | |
314 """ | |
315 Performs flux analysis including pFBA, FVA, and sensitivity analysis. | |
316 | |
317 Args: | |
318 model (cobra.Model): The COBRA model to analyze. | |
319 model_name (str): Name of the model, used in filenames for output. | |
320 output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | |
321 | |
322 Returns: | |
323 List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | |
324 """ | |
325 | |
326 df_pFBA = pd.DataFrame() | |
327 df_FVA= pd.DataFrame() | |
328 df_sensitivity= pd.DataFrame() | |
329 | |
330 for output_type in output_types: | |
331 if(output_type == "pFBA"): | |
332 model.objective = "Biomass" | |
333 solution = cobra.flux_analysis.pfba(model) | |
334 fluxes = solution.fluxes | |
335 df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist() | |
336 df_pFBA = df_pFBA.reset_index(drop=True) | |
337 df_pFBA.index = [model_name] | |
338 df_pFBA = df_pFBA.astype(float).round(6) | |
339 elif(output_type == "FVA"): | |
340 fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
341 columns = [] | |
342 for rxn in fva.index.to_list(): | |
343 columns.append(rxn + "_min") | |
344 columns.append(rxn + "_max") | |
345 df_FVA= pd.DataFrame(columns = columns) | |
346 for index_rxn, row in fva.iterrows(): | |
347 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | |
348 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | |
349 df_FVA = df_FVA.reset_index(drop=True) | |
350 df_FVA.index = [model_name] | |
351 df_FVA = df_FVA.astype(float).round(6) | |
352 elif(output_type == "sensitivity"): | |
353 model.objective = "Biomass" | |
354 solution_original = model.optimize().objective_value | |
355 reactions = model.reactions | |
356 single = cobra.flux_analysis.single_reaction_deletion(model) | |
357 newRow = [] | |
358 df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | |
359 for rxn in reactions: | |
360 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | |
361 df_sensitivity.loc[model_name] = newRow | |
362 df_sensitivity = df_sensitivity.astype(float).round(6) | |
363 return df_pFBA, df_FVA, df_sensitivity | |
364 | |
365 ############################# main ########################################### | |
366 def main() -> None: | |
367 """ | |
368 Initializes everything and sets the program in motion based on the fronted input arguments. | |
369 | |
370 Returns: | |
371 None | |
372 """ | |
373 if not os.path.exists('flux_simulation/'): | |
374 os.makedirs('flux_simulation/') | |
375 | |
376 num_processors = cpu_count() | |
377 | |
378 global ARGS | |
379 ARGS = process_args(sys.argv) | |
380 | |
381 ARGS.output_folder = 'flux_simulation/' | |
382 | |
383 | |
384 model_type :utils.Model = ARGS.model_selector | |
385 if model_type is utils.Model.Custom: | |
386 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
387 else: | |
388 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
389 | |
390 ARGS.bounds = ARGS.input.split(",") | |
391 ARGS.bounds_name = ARGS.names.split(",") | |
392 ARGS.output_types = ARGS.output_type.split(",") | |
393 ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") | |
394 | |
395 | |
396 results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name)) | |
397 | |
398 all_mean = pd.concat([result[0] for result in results], ignore_index=False) | |
399 all_median = pd.concat([result[1] for result in results], ignore_index=False) | |
400 all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | |
401 | |
402 if("mean" in ARGS.output_types): | |
403 all_mean = all_mean.fillna(0.0) | |
404 all_mean = all_mean.sort_index() | |
405 write_to_file(all_mean.T, "mean", True) | |
406 | |
407 if("median" in ARGS.output_types): | |
408 all_median = all_median.fillna(0.0) | |
409 all_median = all_median.sort_index() | |
410 write_to_file(all_median.T, "median", True) | |
411 | |
412 if("quantiles" in ARGS.output_types): | |
413 all_quantiles = all_quantiles.fillna(0.0) | |
414 all_quantiles = all_quantiles.sort_index() | |
415 write_to_file(all_quantiles.T, "quantiles", True) | |
416 | |
417 index_result = 3 | |
418 if("pFBA" in ARGS.output_type_analysis): | |
419 all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | |
420 all_pFBA = all_pFBA.sort_index() | |
421 write_to_file(all_pFBA.T, "pFBA", True) | |
422 index_result+=1 | |
423 if("FVA" in ARGS.output_type_analysis): | |
424 all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False) | |
425 all_FVA = all_FVA.sort_index() | |
426 write_to_file(all_FVA.T, "FVA", True) | |
427 index_result+=1 | |
428 if("sensitivity" in ARGS.output_type_analysis): | |
429 all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | |
430 all_sensitivity = all_sensitivity.sort_index() | |
431 write_to_file(all_sensitivity.T, "sensitivity", True) | |
432 | |
433 pass | |
434 | |
435 ############################################################################## | |
436 if __name__ == "__main__": | |
437 main() |