Mercurial > repos > bimib > cobraxy
comparison COBRAxy/ras_to_bounds.py @ 4:41f35c2f0c7b draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 18 Sep 2024 10:59:10 +0000 |
parents | |
children | fac6930e6385 |
comparison
equal
deleted
inserted
replaced
3:1f3ac6fd9867 | 4:41f35c2f0c7b |
---|---|
1 import argparse | |
2 import utils.general_utils as utils | |
3 from typing import Optional, List | |
4 import os | |
5 import numpy as np | |
6 import pandas as pd | |
7 import cobra | |
8 import sys | |
9 import csv | |
10 from joblib import Parallel, delayed, cpu_count | |
11 | |
12 ################################# process args ############################### | |
13 def process_args(args :List[str]) -> argparse.Namespace: | |
14 """ | |
15 Processes command-line arguments. | |
16 | |
17 Args: | |
18 args (list): List of command-line arguments. | |
19 | |
20 Returns: | |
21 Namespace: An object containing parsed arguments. | |
22 """ | |
23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
24 description = 'process some value\'s') | |
25 | |
26 parser.add_argument( | |
27 '-ms', '--model_selector', | |
28 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
29 help = 'chose which type of model you want use') | |
30 | |
31 parser.add_argument("-mo", "--model", type = str, | |
32 help = "path to input file with custom rules, if provided") | |
33 | |
34 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
35 | |
36 parser.add_argument( | |
37 '-mes', '--medium_selector', | |
38 default = "allOpen", | |
39 help = 'chose which type of medium you want use') | |
40 | |
41 parser.add_argument("-meo", "--medium", type = str, | |
42 help = "path to input file with custom medium, if provided") | |
43 | |
44 parser.add_argument('-ol', '--out_log', | |
45 help = "Output log") | |
46 | |
47 parser.add_argument('-td', '--tool_dir', | |
48 type = str, | |
49 required = True, | |
50 help = 'your tool directory') | |
51 | |
52 parser.add_argument('-ir', '--input_ras', | |
53 type=str, | |
54 required = False, | |
55 help = 'input ras') | |
56 | |
57 parser.add_argument('-rs', '--ras_selector', | |
58 required = True, | |
59 type=utils.Bool("using_RAS"), | |
60 help = 'ras selector') | |
61 | |
62 ARGS = parser.parse_args() | |
63 return ARGS | |
64 | |
65 ########################### warning ########################################### | |
66 def warning(s :str) -> None: | |
67 """ | |
68 Log a warning message to an output log file and print it to the console. | |
69 | |
70 Args: | |
71 s (str): The warning message to be logged and printed. | |
72 | |
73 Returns: | |
74 None | |
75 """ | |
76 with open(ARGS.out_log, 'a') as log: | |
77 log.write(s + "\n\n") | |
78 print(s) | |
79 | |
80 ############################ dataset input #################################### | |
81 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
82 """ | |
83 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
84 | |
85 Args: | |
86 data (str): Path to the CSV file containing the dataset. | |
87 name (str): Name of the dataset, used in error messages. | |
88 | |
89 Returns: | |
90 pandas.DataFrame: DataFrame containing the dataset. | |
91 | |
92 Raises: | |
93 pd.errors.EmptyDataError: If the CSV file is empty. | |
94 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
95 """ | |
96 try: | |
97 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
98 except pd.errors.EmptyDataError: | |
99 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
100 if len(dataset.columns) < 2: | |
101 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
102 return dataset | |
103 | |
104 | |
105 def apply_ras_bounds(model, ras_row, rxns_ids): | |
106 """ | |
107 Adjust the bounds of reactions in the model based on RAS values. | |
108 | |
109 Args: | |
110 model (cobra.Model): The metabolic model to be modified. | |
111 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
112 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
113 | |
114 Returns: | |
115 None | |
116 """ | |
117 for reaction in rxns_ids: | |
118 if reaction in ras_row.index and pd.notna(ras_row[reaction]): | |
119 rxn = model.reactions.get_by_id(reaction) | |
120 scaling_factor = ras_row[reaction] | |
121 rxn.lower_bound *= scaling_factor | |
122 rxn.upper_bound *= scaling_factor | |
123 | |
124 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): | |
125 """ | |
126 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
127 | |
128 Args: | |
129 cellName (str): The name of the RAS cell (used for naming the output file). | |
130 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
131 model (cobra.Model): The metabolic model to be modified. | |
132 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
133 output_folder (str): Folder path where the output CSV file will be saved. | |
134 | |
135 Returns: | |
136 None | |
137 """ | |
138 model_new = model.copy() | |
139 apply_ras_bounds(model_new, ras_row, rxns_ids) | |
140 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
141 bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
142 | |
143 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | |
144 """ | |
145 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
146 | |
147 Args: | |
148 model (cobra.Model): The metabolic model for which bounds will be generated. | |
149 medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | |
150 ras (pd.DataFrame, optional): A DataFrame with RAS scaling factors for different cell types. Defaults to None. | |
151 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
152 | |
153 Returns: | |
154 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
155 """ | |
156 rxns_ids = [rxn.id for rxn in model.reactions] | |
157 | |
158 # Set medium conditions | |
159 for reaction, value in medium.items(): | |
160 if value is not None: | |
161 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
162 | |
163 # Perform Flux Variability Analysis (FVA) | |
164 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
165 | |
166 # Set FVA bounds | |
167 for reaction in rxns_ids: | |
168 rxn = model.reactions.get_by_id(reaction) | |
169 rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
170 rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
171 | |
172 if ras is not None: | |
173 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | |
174 else: | |
175 model_new = model.copy() | |
176 apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) | |
177 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
178 bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | |
179 | |
180 | |
181 ############################# main ########################################### | |
182 def main() -> None: | |
183 """ | |
184 Initializes everything and sets the program in motion based on the fronted input arguments. | |
185 | |
186 Returns: | |
187 None | |
188 """ | |
189 if not os.path.exists('ras_to_bounds'): | |
190 os.makedirs('ras_to_bounds') | |
191 | |
192 | |
193 global ARGS | |
194 ARGS = process_args(sys.argv) | |
195 | |
196 ARGS.output_folder = 'ras_to_bounds/' | |
197 | |
198 if(ARGS.ras_selector == True): | |
199 ras = read_dataset(ARGS.input_ras, "ras dataset") | |
200 ras.replace("None", None, inplace=True) | |
201 ras.set_index("Reactions", drop=True, inplace=True) | |
202 ras = ras.T | |
203 ras = ras.astype(float) | |
204 | |
205 model_type :utils.Model = ARGS.model_selector | |
206 if model_type is utils.Model.Custom: | |
207 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
208 else: | |
209 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
210 | |
211 if(ARGS.medium_selector == "Custom"): | |
212 medium = read_dataset(ARGS.medium, "medium dataset") | |
213 medium.set_index(medium.columns[0], inplace=True) | |
214 medium = medium.astype(float) | |
215 medium = medium[medium.columns[0]].to_dict() | |
216 else: | |
217 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
218 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
219 medium = df_mediums[[ARGS.medium_selector]] | |
220 medium = medium[ARGS.medium_selector].to_dict() | |
221 | |
222 if(ARGS.ras_selector == True): | |
223 generate_bounds(model, medium, ras = ras, output_folder=ARGS.output_folder) | |
224 else: | |
225 generate_bounds(model, medium, output_folder=ARGS.output_folder) | |
226 | |
227 pass | |
228 | |
229 ############################################################################## | |
230 if __name__ == "__main__": | |
231 main() |