Mercurial > repos > bimib > cobraxy
comparison COBRAxy/docs/tutorials/python-api.md @ 492:4ed95023af20 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Tue, 30 Sep 2025 14:02:17 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 491:7a413a5ec566 | 492:4ed95023af20 |
|---|---|
| 1 # Python API Tutorial | |
| 2 | |
| 3 Learn how to use COBRAxy tools programmatically in Python scripts and analysis pipelines. | |
| 4 | |
| 5 ## Overview | |
| 6 | |
| 7 This tutorial teaches you to integrate COBRAxy into Python workflows by calling tool main functions directly with parsed arguments. | |
| 8 | |
| 9 **Time required**: ~45 minutes | |
| 10 **Difficulty**: Intermediate | |
| 11 **Prerequisites**: Basic Python knowledge, COBRAxy installation | |
| 12 | |
| 13 ## Understanding COBRAxy Architecture | |
| 14 | |
| 15 ### Tool Structure | |
| 16 | |
| 17 Each COBRAxy tool is a Python module with: | |
| 18 - `main(args)` function that accepts argument list | |
| 19 - Command-line argument parsing | |
| 20 - Self-contained execution logic | |
| 21 | |
| 22 ```python | |
| 23 # General pattern for all tools | |
| 24 import tool_module | |
| 25 tool_module.main(['-arg1', 'value1', '-arg2', 'value2']) | |
| 26 ``` | |
| 27 | |
| 28 ### Available Tools | |
| 29 | |
| 30 | Python Module | Purpose | Key Arguments | | |
| 31 |---------------|---------|---------------| | |
| 32 | `ras_generator` | Compute reaction activity scores | `-in`, `-ra`, `-rs` | | |
| 33 | `rps_generator` | Compute reaction propensity scores | `-id`, `-rp` | | |
| 34 | `marea` | Statistical pathway analysis | `-input_data`, `-choice_map` | | |
| 35 | `ras_to_bounds` | Apply RAS constraints to model | `-ir`, `-ms`, `-idop` | | |
| 36 | `flux_simulation` | Sample metabolic fluxes | `-ms`, `-in`, `-a`, `-ns` | | |
| 37 | `flux_to_map` | Add flux data to maps | `-if`, `-mp`, `-idop` | | |
| 38 | |
| 39 ## Setup Your Environment | |
| 40 | |
| 41 ### Import Required Modules | |
| 42 | |
| 43 ```python | |
| 44 import sys | |
| 45 import os | |
| 46 from pathlib import Path | |
| 47 | |
| 48 # Add COBRAxy to Python path | |
| 49 cobraxy_path = "/path/to/COBRAxy" | |
| 50 sys.path.insert(0, cobraxy_path) | |
| 51 | |
| 52 # Import COBRAxy tools | |
| 53 import ras_generator | |
| 54 import rps_generator | |
| 55 import marea | |
| 56 import ras_to_bounds | |
| 57 import flux_simulation | |
| 58 import flux_to_map | |
| 59 import metabolicModel2Tabular as model_setting | |
| 60 ``` | |
| 61 | |
| 62 ### Set Working Directory | |
| 63 | |
| 64 ```python | |
| 65 # Set up working directory | |
| 66 work_dir = Path("/path/to/analysis") | |
| 67 work_dir.mkdir(exist_ok=True) | |
| 68 os.chdir(work_dir) | |
| 69 | |
| 70 # COBRAxy tools expect this parameter | |
| 71 tool_dir = str(Path(cobraxy_path).absolute()) | |
| 72 ``` | |
| 73 | |
| 74 ## Basic Workflow Example | |
| 75 | |
| 76 ### Step 1: Prepare Sample Data | |
| 77 | |
| 78 ```python | |
| 79 import pandas as pd | |
| 80 import numpy as np | |
| 81 | |
| 82 # Create sample gene expression data | |
| 83 genes = ['HGNC:5', 'HGNC:10', 'HGNC:15', 'HGNC:25', 'HGNC:30'] | |
| 84 samples = ['Control_1', 'Control_2', 'Treatment_1', 'Treatment_2'] | |
| 85 | |
| 86 # Generate random expression values | |
| 87 np.random.seed(42) | |
| 88 data = np.random.lognormal(mean=2, sigma=1, size=(len(genes), len(samples))) | |
| 89 | |
| 90 # Create DataFrame | |
| 91 expression_df = pd.DataFrame(data, index=genes, columns=samples) | |
| 92 expression_df.index.name = 'Gene_ID' | |
| 93 | |
| 94 # Save to file | |
| 95 expression_file = work_dir / "expression_data.tsv" | |
| 96 expression_df.to_csv(expression_file, sep='\t') | |
| 97 print(f"Created sample data: {expression_file}") | |
| 98 ``` | |
| 99 | |
| 100 ### Step 2: Extract Model Information | |
| 101 | |
| 102 ```python | |
| 103 # Extract model components (optional, for understanding model structure) | |
| 104 model_args = [ | |
| 105 '-td', tool_dir, | |
| 106 '-ms', 'ENGRO2', # Use built-in ENGRO2 model | |
| 107 '-idop', str(work_dir / 'model_info') | |
| 108 ] | |
| 109 | |
| 110 try: | |
| 111 model_setting.main(model_args) | |
| 112 print("✓ Model information extracted") | |
| 113 except Exception as e: | |
| 114 print(f"Model extraction failed: {e}") | |
| 115 ``` | |
| 116 | |
| 117 ### Step 3: Generate RAS Scores | |
| 118 | |
| 119 ```python | |
| 120 # Generate Reaction Activity Scores | |
| 121 ras_output = work_dir / "ras_scores.tsv" | |
| 122 | |
| 123 ras_args = [ | |
| 124 '-td', tool_dir, | |
| 125 '-in', str(expression_file), | |
| 126 '-ra', str(ras_output), | |
| 127 '-rs', 'ENGRO2', # Built-in model | |
| 128 '-n', 'true' # Handle missing genes | |
| 129 ] | |
| 130 | |
| 131 try: | |
| 132 ras_generator.main(ras_args) | |
| 133 print(f"✓ RAS scores generated: {ras_output}") | |
| 134 except Exception as e: | |
| 135 print(f"RAS generation failed: {e}") | |
| 136 raise | |
| 137 ``` | |
| 138 | |
| 139 ### Step 4: Generate RPS Scores (Optional) | |
| 140 | |
| 141 ```python | |
| 142 # Create sample metabolite data | |
| 143 metabolites = ['glucose', 'pyruvate', 'lactate', 'ATP', 'NADH'] | |
| 144 met_data = np.random.lognormal(mean=3, sigma=0.5, size=(len(metabolites), len(samples))) | |
| 145 | |
| 146 met_df = pd.DataFrame(met_data, index=metabolites, columns=samples) | |
| 147 met_df.index.name = 'Metabolite_ID' | |
| 148 | |
| 149 metabolite_file = work_dir / "metabolite_data.tsv" | |
| 150 met_df.to_csv(metabolite_file, sep='\t') | |
| 151 | |
| 152 # Generate Reaction Propensity Scores | |
| 153 rps_output = work_dir / "rps_scores.tsv" | |
| 154 | |
| 155 rps_args = [ | |
| 156 '-td', tool_dir, | |
| 157 '-id', str(metabolite_file), | |
| 158 '-rp', str(rps_output) | |
| 159 ] | |
| 160 | |
| 161 try: | |
| 162 rps_generator.main(rps_args) | |
| 163 print(f"✓ RPS scores generated: {rps_output}") | |
| 164 except Exception as e: | |
| 165 print(f"RPS generation warning: {e}") | |
| 166 # RPS generation might fail with sample data - that's OK | |
| 167 ``` | |
| 168 | |
| 169 ### Step 5: Statistical Analysis with MAREA | |
| 170 | |
| 171 ```python | |
| 172 # Create enriched pathway maps | |
| 173 maps_output = work_dir / "pathway_maps" | |
| 174 | |
| 175 marea_args = [ | |
| 176 '-td', tool_dir, | |
| 177 '-using_RAS', 'true', | |
| 178 '-input_data', str(ras_output), | |
| 179 '-choice_map', 'ENGRO2', | |
| 180 '-gs', 'true', # Gene set analysis | |
| 181 '-idop', str(maps_output) | |
| 182 ] | |
| 183 | |
| 184 try: | |
| 185 marea.main(marea_args) | |
| 186 print(f"✓ Pathway maps created: {maps_output}") | |
| 187 except Exception as e: | |
| 188 print(f"MAREA analysis failed: {e}") | |
| 189 ``` | |
| 190 | |
| 191 ### Step 6: Flux Simulation Pipeline | |
| 192 | |
| 193 ```python | |
| 194 # Apply RAS constraints to model | |
| 195 bounds_output = work_dir / "model_bounds" | |
| 196 | |
| 197 bounds_args = [ | |
| 198 '-td', tool_dir, | |
| 199 '-ms', 'ENGRO2', | |
| 200 '-ir', str(ras_output), | |
| 201 '-rs', 'true', # Use RAS values | |
| 202 '-idop', str(bounds_output) | |
| 203 ] | |
| 204 | |
| 205 try: | |
| 206 ras_to_bounds.main(bounds_args) | |
| 207 print(f"✓ Model constraints applied: {bounds_output}") | |
| 208 except Exception as e: | |
| 209 print(f"Bounds generation failed: {e}") | |
| 210 raise | |
| 211 | |
| 212 # Sample metabolic fluxes | |
| 213 flux_output = work_dir / "flux_samples" | |
| 214 | |
| 215 flux_args = [ | |
| 216 '-td', tool_dir, | |
| 217 '-ms', 'ENGRO2', | |
| 218 '-in', str(bounds_output / "*.tsv"), # Will be expanded by tool | |
| 219 '-a', 'CBS', # Sampling algorithm | |
| 220 '-ns', '1000', # Number of samples | |
| 221 '-idop', str(flux_output) | |
| 222 ] | |
| 223 | |
| 224 try: | |
| 225 flux_simulation.main(flux_args) | |
| 226 print(f"✓ Flux samples generated: {flux_output}") | |
| 227 except Exception as e: | |
| 228 print(f"Flux simulation failed: {e}") | |
| 229 ``` | |
| 230 | |
| 231 ### Step 7: Create Final Visualizations | |
| 232 | |
| 233 ```python | |
| 234 # Add flux data to enriched maps | |
| 235 final_maps = work_dir / "final_visualizations" | |
| 236 | |
| 237 # Check if we have both maps and flux data | |
| 238 maps_dir = maps_output | |
| 239 flux_dir = flux_output | |
| 240 | |
| 241 if maps_dir.exists() and flux_dir.exists(): | |
| 242 flux_to_map_args = [ | |
| 243 '-td', tool_dir, | |
| 244 '-if', str(flux_dir / "*.tsv"), | |
| 245 '-mp', str(maps_dir / "*.svg"), | |
| 246 '-idop', str(final_maps) | |
| 247 ] | |
| 248 | |
| 249 try: | |
| 250 flux_to_map.main(flux_to_map_args) | |
| 251 print(f"✓ Final visualizations created: {final_maps}") | |
| 252 except Exception as e: | |
| 253 print(f"Final mapping failed: {e}") | |
| 254 else: | |
| 255 print("Skipping final visualization - missing input files") | |
| 256 ``` | |
| 257 | |
| 258 ## Advanced Usage Patterns | |
| 259 | |
| 260 ### Error Handling and Validation | |
| 261 | |
| 262 ```python | |
| 263 def run_cobraxy_tool(tool_module, args, description): | |
| 264 """Helper function to run COBRAxy tools with error handling.""" | |
| 265 try: | |
| 266 print(f"Running {description}...") | |
| 267 tool_module.main(args) | |
| 268 print(f"✓ {description} completed successfully") | |
| 269 return True | |
| 270 except Exception as e: | |
| 271 print(f"✗ {description} failed: {e}") | |
| 272 return False | |
| 273 | |
| 274 # Usage | |
| 275 success = run_cobraxy_tool( | |
| 276 ras_generator, | |
| 277 ras_args, | |
| 278 "RAS generation" | |
| 279 ) | |
| 280 | |
| 281 if not success: | |
| 282 print("Pipeline stopped due to error") | |
| 283 exit(1) | |
| 284 ``` | |
| 285 | |
| 286 ### Batch Processing Multiple Datasets | |
| 287 | |
| 288 ```python | |
| 289 def process_dataset(dataset_path, output_dir): | |
| 290 """Process a single dataset through COBRAxy pipeline.""" | |
| 291 | |
| 292 dataset_name = dataset_path.stem | |
| 293 out_dir = Path(output_dir) / dataset_name | |
| 294 out_dir.mkdir(exist_ok=True) | |
| 295 | |
| 296 # Generate RAS | |
| 297 ras_file = out_dir / "ras_scores.tsv" | |
| 298 ras_args = [ | |
| 299 '-td', tool_dir, | |
| 300 '-in', str(dataset_path), | |
| 301 '-ra', str(ras_file), | |
| 302 '-rs', 'ENGRO2' | |
| 303 ] | |
| 304 | |
| 305 if run_cobraxy_tool(ras_generator, ras_args, f"RAS for {dataset_name}"): | |
| 306 # Continue with MAREA analysis | |
| 307 maps_dir = out_dir / "maps" | |
| 308 marea_args = [ | |
| 309 '-td', tool_dir, | |
| 310 '-using_RAS', 'true', | |
| 311 '-input_data', str(ras_file), | |
| 312 '-choice_map', 'ENGRO2', | |
| 313 '-idop', str(maps_dir) | |
| 314 ] | |
| 315 run_cobraxy_tool(marea, marea_args, f"MAREA for {dataset_name}") | |
| 316 | |
| 317 return out_dir | |
| 318 | |
| 319 # Process multiple datasets | |
| 320 datasets = [ | |
| 321 "/path/to/dataset1.tsv", | |
| 322 "/path/to/dataset2.tsv", | |
| 323 "/path/to/dataset3.tsv" | |
| 324 ] | |
| 325 | |
| 326 results = [] | |
| 327 for dataset in datasets: | |
| 328 result_dir = process_dataset(Path(dataset), work_dir / "batch_results") | |
| 329 results.append(result_dir) | |
| 330 | |
| 331 print(f"Processed {len(results)} datasets") | |
| 332 ``` | |
| 333 | |
| 334 ### Custom Analysis Pipelines | |
| 335 | |
| 336 ```python | |
| 337 class COBRAxyPipeline: | |
| 338 """Custom COBRAxy analysis pipeline.""" | |
| 339 | |
| 340 def __init__(self, tool_dir, work_dir): | |
| 341 self.tool_dir = tool_dir | |
| 342 self.work_dir = Path(work_dir) | |
| 343 self.work_dir.mkdir(exist_ok=True) | |
| 344 | |
| 345 def run_enrichment_analysis(self, expression_file, model='ENGRO2'): | |
| 346 """Run enrichment-focused analysis.""" | |
| 347 | |
| 348 # Generate RAS | |
| 349 ras_file = self.work_dir / "ras_scores.tsv" | |
| 350 ras_args = ['-td', self.tool_dir, '-in', str(expression_file), | |
| 351 '-ra', str(ras_file), '-rs', model] | |
| 352 | |
| 353 if not run_cobraxy_tool(ras_generator, ras_args, "RAS generation"): | |
| 354 return None | |
| 355 | |
| 356 # Run MAREA | |
| 357 maps_dir = self.work_dir / "enrichment_maps" | |
| 358 marea_args = ['-td', self.tool_dir, '-using_RAS', 'true', | |
| 359 '-input_data', str(ras_file), '-choice_map', model, | |
| 360 '-gs', 'true', '-idop', str(maps_dir)] | |
| 361 | |
| 362 if run_cobraxy_tool(marea, marea_args, "MAREA analysis"): | |
| 363 return maps_dir | |
| 364 return None | |
| 365 | |
| 366 def run_flux_analysis(self, expression_file, model='ENGRO2', n_samples=1000): | |
| 367 """Run flux sampling analysis.""" | |
| 368 | |
| 369 # Generate RAS and apply bounds | |
| 370 ras_file = self.work_dir / "ras_scores.tsv" | |
| 371 bounds_dir = self.work_dir / "bounds" | |
| 372 flux_dir = self.work_dir / "flux_samples" | |
| 373 | |
| 374 # RAS generation | |
| 375 ras_args = ['-td', self.tool_dir, '-in', str(expression_file), | |
| 376 '-ra', str(ras_file), '-rs', model] | |
| 377 if not run_cobraxy_tool(ras_generator, ras_args, "RAS generation"): | |
| 378 return None | |
| 379 | |
| 380 # Apply bounds | |
| 381 bounds_args = ['-td', self.tool_dir, '-ms', model, '-ir', str(ras_file), | |
| 382 '-rs', 'true', '-idop', str(bounds_dir)] | |
| 383 if not run_cobraxy_tool(ras_to_bounds, bounds_args, "Bounds application"): | |
| 384 return None | |
| 385 | |
| 386 # Flux sampling | |
| 387 flux_args = ['-td', self.tool_dir, '-ms', model, | |
| 388 '-in', str(bounds_dir / "*.tsv"), | |
| 389 '-a', 'CBS', '-ns', str(n_samples), '-idop', str(flux_dir)] | |
| 390 | |
| 391 if run_cobraxy_tool(flux_simulation, flux_args, "Flux simulation"): | |
| 392 return flux_dir | |
| 393 return None | |
| 394 | |
| 395 # Usage | |
| 396 pipeline = COBRAxyPipeline(tool_dir, work_dir / "custom_analysis") | |
| 397 | |
| 398 # Run enrichment analysis | |
| 399 enrichment_results = pipeline.run_enrichment_analysis(expression_file) | |
| 400 if enrichment_results: | |
| 401 print(f"Enrichment analysis completed: {enrichment_results}") | |
| 402 | |
| 403 # Run flux analysis | |
| 404 flux_results = pipeline.run_flux_analysis(expression_file, n_samples=500) | |
| 405 if flux_results: | |
| 406 print(f"Flux analysis completed: {flux_results}") | |
| 407 ``` | |
| 408 | |
| 409 ## Integration with Data Analysis Libraries | |
| 410 | |
| 411 ### Pandas Integration | |
| 412 | |
| 413 ```python | |
| 414 # Read COBRAxy results back into pandas | |
| 415 ras_df = pd.read_csv(ras_output, sep='\t', index_col=0) | |
| 416 print(f"RAS data shape: {ras_df.shape}") | |
| 417 print(f"Sample statistics:\n{ras_df.describe()}") | |
| 418 | |
| 419 # Filter highly variable reactions | |
| 420 ras_std = ras_df.std(axis=1) | |
| 421 variable_reactions = ras_std.nlargest(20).index | |
| 422 print(f"Most variable reactions: {list(variable_reactions)}") | |
| 423 ``` | |
| 424 | |
| 425 ### Matplotlib Visualization | |
| 426 | |
| 427 ```python | |
| 428 import matplotlib.pyplot as plt | |
| 429 import seaborn as sns | |
| 430 | |
| 431 # Visualize RAS distributions | |
| 432 plt.figure(figsize=(12, 8)) | |
| 433 sns.heatmap(ras_df.iloc[:50], cmap='RdBu_r', center=0, cbar_kws={'label': 'RAS Score'}) | |
| 434 plt.title('Reaction Activity Scores (Top 50 Reactions)') | |
| 435 plt.xlabel('Samples') | |
| 436 plt.ylabel('Reactions') | |
| 437 plt.tight_layout() | |
| 438 plt.savefig(work_dir / 'ras_heatmap.png', dpi=300) | |
| 439 plt.show() | |
| 440 ``` | |
| 441 | |
| 442 ## Best Practices | |
| 443 | |
| 444 ### 1. Environment Management | |
| 445 ```python | |
| 446 # Use pathlib for cross-platform compatibility | |
| 447 from pathlib import Path | |
| 448 | |
| 449 # Use absolute paths | |
| 450 tool_dir = str(Path(cobraxy_path).absolute()) | |
| 451 work_dir = Path("/analysis").absolute() | |
| 452 ``` | |
| 453 | |
| 454 ### 2. Error Handling | |
| 455 ```python | |
| 456 # Always wrap tool calls in try-except | |
| 457 try: | |
| 458 ras_generator.main(ras_args) | |
| 459 except Exception as e: | |
| 460 print(f"RAS generation failed: {e}") | |
| 461 # Log details, cleanup, or alternative action | |
| 462 ``` | |
| 463 | |
| 464 ### 3. Argument Validation | |
| 465 ```python | |
| 466 def validate_file_exists(filepath): | |
| 467 """Validate input file exists.""" | |
| 468 path = Path(filepath) | |
| 469 if not path.exists(): | |
| 470 raise FileNotFoundError(f"Input file not found: {filepath}") | |
| 471 return str(path.absolute()) | |
| 472 | |
| 473 # Use before calling tools | |
| 474 expression_file = validate_file_exists(expression_file) | |
| 475 ``` | |
| 476 | |
| 477 | |
| 478 | |
| 479 ## Troubleshooting | |
| 480 | |
| 481 ### Common Issues | |
| 482 | |
| 483 **Import errors** | |
| 484 ```python | |
| 485 # Check if COBRAxy path is correct | |
| 486 import sys | |
| 487 print("Python path includes:") | |
| 488 for p in sys.path: | |
| 489 print(f" {p}") | |
| 490 | |
| 491 # Add COBRAxy path | |
| 492 sys.path.insert(0, "/correct/path/to/COBRAxy") | |
| 493 ``` | |
| 494 | |
| 495 **Tool execution failures** | |
| 496 ```python | |
| 497 # Enable verbose output | |
| 498 import logging | |
| 499 logging.basicConfig(level=logging.DEBUG) | |
| 500 | |
| 501 # Check working directory | |
| 502 print(f"Current directory: {os.getcwd()}") | |
| 503 print(f"Directory contents: {list(Path('.').iterdir())}") | |
| 504 ``` | |
| 505 | |
| 506 **File path issues** | |
| 507 ```python | |
| 508 # Use absolute paths | |
| 509 ras_args = [ | |
| 510 '-td', str(Path(tool_dir).absolute()), | |
| 511 '-in', str(Path(expression_file).absolute()), | |
| 512 '-ra', str(Path(ras_output).absolute()), | |
| 513 '-rs', 'ENGRO2' | |
| 514 ] | |
| 515 ``` | |
| 516 | |
| 517 ## Next Steps | |
| 518 | |
| 519 Now that you can use COBRAxy programmatically: | |
| 520 | |
| 521 1. **[Tools Reference](../tools/)** - Detailed parameter documentation | |
| 522 2. **[Examples](../examples/)** - Real-world analysis scripts | |
| 523 3. **Build custom analysis pipelines** for your research needs | |
| 524 4. **Integrate with workflow managers** like Snakemake or Nextflow | |
| 525 | |
| 526 ## Resources | |
| 527 | |
| 528 - [COBRApy Documentation](https://cobrapy.readthedocs.io/) - Underlying metabolic modeling library | |
| 529 - [Pandas Documentation](https://pandas.pydata.org/) - Data manipulation | |
| 530 - [Matplotlib Gallery](https://matplotlib.org/gallery/) - Visualization examples | |
| 531 - [Python Pathlib](https://docs.python.org/3/library/pathlib.html) - Modern path handling |
