Mercurial > repos > bimib > cobraxy
comparison COBRAxy/flux_to_map.py @ 293:7b8d9de81a86 draft
Uploaded
author | francesco_lapi |
---|---|
date | Thu, 15 May 2025 18:23:52 +0000 |
parents | e87aeb3a33cd |
children | 626b6d1de075 |
comparison
equal
deleted
inserted
replaced
292:31bc171a6ba5 | 293:7b8d9de81a86 |
---|---|
13 from PIL import Image | 13 from PIL import Image |
14 import os | 14 import os |
15 import copy | 15 import copy |
16 import argparse | 16 import argparse |
17 import pyvips | 17 import pyvips |
18 from PIL import Image, ImageDraw, ImageFont | 18 from PIL import Image |
19 from typing import Tuple, Union, Optional, List, Dict | 19 from typing import Tuple, Union, Optional, List, Dict |
20 import matplotlib.pyplot as plt | 20 import matplotlib.pyplot as plt |
21 | 21 |
22 ERRORS = [] | 22 ERRORS = [] |
23 ########################## argparse ########################################## | 23 ########################## argparse ########################################## |
48 | 48 |
49 #Computation details: | 49 #Computation details: |
50 parser.add_argument( | 50 parser.add_argument( |
51 '-co', '--comparison', | 51 '-co', '--comparison', |
52 type = str, | 52 type = str, |
53 default = '1vs1', | 53 default = 'manyvsmany', |
54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) |
55 | |
56 parser.add_argument( | |
57 '-te' ,'--test', | |
58 type = str, | |
59 default = 'ks', | |
60 choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw'], | |
61 help = 'Statistical test to use (default: %(default)s)') | |
55 | 62 |
56 parser.add_argument( | 63 parser.add_argument( |
57 '-pv' ,'--pValue', | 64 '-pv' ,'--pValue', |
58 type = float, | 65 type = float, |
59 default = 0.1, | 66 default = 0.1, |
128 | 135 |
129 args :argparse.Namespace = parser.parse_args(args) | 136 args :argparse.Namespace = parser.parse_args(args) |
130 args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI | 137 args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI |
131 | 138 |
132 return args | 139 return args |
133 | 140 |
134 ############################ dataset input #################################### | 141 ############################ dataset input #################################### |
135 def read_dataset(data :str, name :str) -> pd.DataFrame: | 142 def read_dataset(data :str, name :str) -> pd.DataFrame: |
136 """ | 143 """ |
137 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 144 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. |
138 | 145 |
193 return '-INF' | 200 return '-INF' |
194 elif avg2 == 0: | 201 elif avg2 == 0: |
195 return 'INF' | 202 return 'INF' |
196 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 203 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 |
197 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 204 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) |
198 | |
199 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
200 """ | |
201 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
202 | |
203 Args: | |
204 l : current style string of an SVG element | |
205 col : new value for the "stroke" style property | |
206 width : new value for the "stroke-width" style property | |
207 dash : new value for the "stroke-dasharray" style property | |
208 | |
209 Returns: | |
210 str : the fixed style string | |
211 """ | |
212 tmp = l.split(';') | |
213 flag_col = False | |
214 flag_width = False | |
215 flag_dash = False | |
216 for i in range(len(tmp)): | |
217 if tmp[i].startswith('stroke:'): | |
218 tmp[i] = 'stroke:' + col | |
219 flag_col = True | |
220 if tmp[i].startswith('stroke-width:'): | |
221 tmp[i] = 'stroke-width:' + width | |
222 flag_width = True | |
223 if tmp[i].startswith('stroke-dasharray:'): | |
224 tmp[i] = 'stroke-dasharray:' + dash | |
225 flag_dash = True | |
226 if not flag_col: | |
227 tmp.append('stroke:' + col) | |
228 if not flag_width: | |
229 tmp.append('stroke-width:' + width) | |
230 if not flag_dash: | |
231 tmp.append('stroke-dasharray:' + dash) | |
232 return ';'.join(tmp) | |
233 | |
234 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | |
235 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
236 """ | |
237 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
238 | |
239 Args: | |
240 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
241 core_map : SVG map to modify | |
242 threshold_P_V : threshold for a p-value to be considered significant | |
243 threshold_F_C : threshold for a fold change value to be considered significant | |
244 max_z_score : highest z-score (absolute value) | |
245 | |
246 Returns: | |
247 ET.ElementTree : the modified core_map | |
248 | |
249 Side effects: | |
250 core_map : mut | |
251 """ | |
252 maxT = 12 | |
253 minT = 2 | |
254 grey = '#BEBEBE' | |
255 blue = '#6495ed' # azzurrino | |
256 red = '#ecac68' # arancione | |
257 for el in core_map.iter(): | |
258 el_id = str(el.get('id')) | |
259 if el_id.startswith('R_'): | |
260 tmp = d.get(el_id[2:]) | |
261 if tmp != None: | |
262 p_val :float = tmp[0] | |
263 f_c = tmp[1] | |
264 z_score = tmp[2] | |
265 | |
266 if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue | |
267 | |
268 if p_val < threshold_P_V: | |
269 if not isinstance(f_c, str): | |
270 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | |
271 col = grey | |
272 width = str(minT) | |
273 else: | |
274 if f_c < 0: | |
275 col = blue | |
276 elif f_c > 0: | |
277 col = red | |
278 width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | |
279 else: | |
280 if f_c == '-INF': | |
281 col = blue | |
282 elif f_c == 'INF': | |
283 col = red | |
284 width = str(maxT) | |
285 dash = 'none' | |
286 else: | |
287 dash = '5,5' | |
288 col = grey | |
289 width = str(minT) | |
290 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
291 return core_map | |
292 | 205 |
293 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 206 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: |
294 """ | 207 """ |
295 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 208 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but |
296 not enforced, if more than one element with the exact ID is found only the first will be returned. | 209 not enforced, if more than one element with the exact ID is found only the first will be returned. |
494 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 407 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) |
495 | 408 |
496 continue | 409 continue |
497 | 410 |
498 width = Arrow.MAX_W | 411 width = Arrow.MAX_W |
499 if not math.isinf(foldChange): | 412 if not math.isinf(z_score): |
500 try: | 413 try: |
501 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | 414 width = min( |
415 max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), | |
416 Arrow.MAX_W) | |
502 | 417 |
503 except ZeroDivisionError: pass | 418 except ZeroDivisionError: pass |
504 # TODO CHECK RV | 419 # TODO CHECK RV |
505 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 420 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions |
506 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 421 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) |
695 dataset1Data : data from the 1st dataset. | 610 dataset1Data : data from the 1st dataset. |
696 dataset2Data : data from the 2nd dataset. | 611 dataset2Data : data from the 2nd dataset. |
697 | 612 |
698 Returns: | 613 Returns: |
699 tuple: (P-value, Z-score) | 614 tuple: (P-value, Z-score) |
700 - P-value from a Kolmogorov-Smirnov test on the provided data. | 615 - P-value from the selected test on the provided data. |
701 - Z-score of the difference between means of the two datasets. | 616 - Z-score of the difference between means of the two datasets. |
702 """ | 617 """ |
703 # Perform Kolmogorov-Smirnov test | 618 |
704 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 619 match ARGS.test: |
620 case "ks": | |
621 # Perform Kolmogorov-Smirnov test | |
622 _, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
623 case "ttest_p": | |
624 # Perform t-test for paired samples | |
625 _, p_value = st.ttest_rel(dataset1Data, dataset2Data) | |
626 case "ttest_ind": | |
627 # Perform t-test for independent samples | |
628 _, p_value = st.ttest_ind(dataset1Data, dataset2Data) | |
629 case "wilcoxon": | |
630 # Perform Wilcoxon signed-rank test | |
631 _, p_value = st.wilcoxon(dataset1Data, dataset2Data) | |
632 case "mw": | |
633 # Perform Mann-Whitney U test | |
634 _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) | |
705 | 635 |
706 # Calculate means and standard deviations | 636 # Calculate means and standard deviations |
707 mean1 = np.nanmean(dataset1Data) | 637 mean1 = np.nanmean(dataset1Data) |
708 mean2 = np.nanmean(dataset2Data) | 638 mean2 = np.nanmean(dataset2Data) |
709 std1 = np.nanstd(dataset1Data, ddof=1) | 639 std1 = np.nanstd(dataset1Data, ddof=1) |
730 try: | 660 try: |
731 p_value, z_score = computePValue(l1, l2) | 661 p_value, z_score = computePValue(l1, l2) |
732 avg1 = sum(l1) / len(l1) | 662 avg1 = sum(l1) / len(l1) |
733 avg2 = sum(l2) / len(l2) | 663 avg2 = sum(l2) / len(l2) |
734 f_c = fold_change(avg1, avg2) | 664 f_c = fold_change(avg1, avg2) |
735 if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 665 if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) |
736 | 666 |
737 tmp[reactId] = [float(p_value), f_c, z_score, avg1, avg2] | 667 tmp[reactId] = [float(p_value), f_c, z_score, avg1, avg2] |
738 except (TypeError, ZeroDivisionError): continue | 668 except (TypeError, ZeroDivisionError): continue |
739 | 669 |
740 return tmp, max_z_score | 670 return tmp, max_z_score |
813 | 743 |
814 elif ARGS.option == "dataset_class": | 744 elif ARGS.option == "dataset_class": |
815 classes = read_dataset(classPath, "class") | 745 classes = read_dataset(classPath, "class") |
816 classes = classes.astype(str) | 746 classes = classes.astype(str) |
817 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 747 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") |
818 #check if classes have mathc on ids | 748 #check if classes have match on ids |
819 if not all(classes.iloc[:, 0].isin(ids)): | 749 if not all(classes.iloc[:, 0].isin(ids)): |
820 utils.logWarning( | 750 utils.logWarning( |
821 "No match between classes and sample IDs", ARGS.out_log) | 751 "No match between classes and sample IDs", ARGS.out_log) |
822 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 752 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) |
823 | 753 |
886 dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], | 816 dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], |
887 **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] | 817 **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] |
888 for i, col in enumerate(dataset.columns)} | 818 for i, col in enumerate(dataset.columns)} |
889 }) | 819 }) |
890 | 820 |
891 print(new_rows) | 821 #print(new_rows) |
892 | 822 |
893 # Ritorna il dataset originale con le nuove righe | 823 # Ritorna il dataset originale con le nuove righe |
894 dataset.reset_index(inplace=True) | 824 dataset.reset_index(inplace=True) |
895 dataset = pd.concat([dataset, new_rows], ignore_index=True) | 825 dataset = pd.concat([dataset, new_rows], ignore_index=True) |
896 | 826 |
910 str: The color in hexadecimal format (e.g., '#ff0000' for red). | 840 str: The color in hexadecimal format (e.g., '#ff0000' for red). |
911 """ | 841 """ |
912 # Convert RGB values (0-1 range) to hexadecimal format | 842 # Convert RGB values (0-1 range) to hexadecimal format |
913 rgb = (np.array(rgb) * 255).astype(int) | 843 rgb = (np.array(rgb) * 255).astype(int) |
914 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | 844 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) |
915 | |
916 | |
917 | 845 |
918 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | 846 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): |
919 """ | 847 """ |
920 Create and save an image of the colormap showing the gradient and its range. | 848 Create and save an image of the colormap showing the gradient and its range. |
921 | 849 |
1058 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) | 986 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) |
1059 convert_to_pdf(svgFilePath, pngPath, pdfPath) | 987 convert_to_pdf(svgFilePath, pngPath, pdfPath) |
1060 if not ARGS.generate_svg: | 988 if not ARGS.generate_svg: |
1061 os.remove(svgFilePath.show()) | 989 os.remove(svgFilePath.show()) |
1062 | 990 |
1063 | |
1064 ############################ MAIN ############################################# | 991 ############################ MAIN ############################################# |
1065 def main(args:List[str] = None) -> None: | 992 def main(args:List[str] = None) -> None: |
1066 """ | 993 """ |
1067 Initializes everything and sets the program in motion based on the fronted input arguments. | 994 Initializes everything and sets the program in motion based on the fronted input arguments. |
1068 | 995 |