Mercurial > repos > bimib > cobraxy
comparison COBRAxy/src/importMetabolicModel.py @ 540:7d5b35c715e8 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Sat, 25 Oct 2025 15:08:19 +0000 |
| parents | |
| children | fcdbc81feb45 |
comparison
equal
deleted
inserted
replaced
| 539:2fb97466e404 | 540:7d5b35c715e8 |
|---|---|
| 1 """ | |
| 2 Scripts to generate a tabular file of a metabolic model (built-in or custom). | |
| 3 | |
| 4 This script loads a COBRA model (built-in or custom), optionally applies | |
| 5 medium and gene nomenclature settings, derives reaction-related metadata | |
| 6 (GPR rules, formulas, bounds, objective coefficients, medium membership, | |
| 7 and compartments for ENGRO2), and writes a tabular summary. | |
| 8 """ | |
| 9 | |
| 10 import os | |
| 11 import csv | |
| 12 import cobra | |
| 13 import argparse | |
| 14 import pandas as pd | |
| 15 import utils.general_utils as utils | |
| 16 from typing import Optional, Tuple, List | |
| 17 import utils.model_utils as modelUtils | |
| 18 import logging | |
| 19 from pathlib import Path | |
| 20 | |
| 21 | |
| 22 ARGS : argparse.Namespace | |
| 23 def process_args(args: List[str] = None) -> argparse.Namespace: | |
| 24 """ | |
| 25 Parse command-line arguments. | |
| 26 """ | |
| 27 | |
| 28 parser = argparse.ArgumentParser( | |
| 29 usage="%(prog)s [options]", | |
| 30 description="Generate custom data from a given model" | |
| 31 ) | |
| 32 | |
| 33 parser.add_argument("--out_log", type=str, required=True, | |
| 34 help="Output log file") | |
| 35 | |
| 36 parser.add_argument("--model", type=str, | |
| 37 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | |
| 38 parser.add_argument("--input", type=str, | |
| 39 help="Custom model file (JSON, XML, MAT, YAML)") | |
| 40 parser.add_argument("--name", nargs='*', required=True, | |
| 41 help="Model name (default or custom)") | |
| 42 | |
| 43 parser.add_argument("--medium_selector", type=str, required=True, | |
| 44 help="Medium selection option") | |
| 45 | |
| 46 parser.add_argument("--gene_format", type=str, default="Default", | |
| 47 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ") | |
| 48 | |
| 49 parser.add_argument("--out_tabular", type=str, | |
| 50 help="Output file for the merged dataset (CSV or XLSX)") | |
| 51 | |
| 52 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | |
| 53 help="Tool directory (passed from Galaxy as $__tool_directory__)") | |
| 54 | |
| 55 | |
| 56 return parser.parse_args(args) | |
| 57 | |
| 58 ################################- INPUT DATA LOADING -################################ | |
| 59 def detect_file_format(file_path: str) -> utils.FileFormat: | |
| 60 """ | |
| 61 Detect file format by examining file content and extension. | |
| 62 Handles Galaxy .dat files by looking at content. | |
| 63 """ | |
| 64 try: | |
| 65 with open(file_path, 'r') as f: | |
| 66 first_lines = ''.join([f.readline() for _ in range(5)]) | |
| 67 | |
| 68 # Check for XML (SBML) | |
| 69 if '<?xml' in first_lines or '<sbml' in first_lines: | |
| 70 return utils.FileFormat.XML | |
| 71 | |
| 72 # Check for JSON | |
| 73 if first_lines.strip().startswith('{'): | |
| 74 return utils.FileFormat.JSON | |
| 75 | |
| 76 # Check for YAML | |
| 77 if any(line.strip().endswith(':') for line in first_lines.split('\n')[:3]): | |
| 78 return utils.FileFormat.YML | |
| 79 | |
| 80 except: | |
| 81 pass | |
| 82 | |
| 83 # Fall back to extension-based detection | |
| 84 if file_path.endswith('.xml') or file_path.endswith('.sbml'): | |
| 85 return utils.FileFormat.XML | |
| 86 elif file_path.endswith('.json'): | |
| 87 return utils.FileFormat.JSON | |
| 88 elif file_path.endswith('.mat'): | |
| 89 return utils.FileFormat.MAT | |
| 90 elif file_path.endswith('.yml') or file_path.endswith('.yaml'): | |
| 91 return utils.FileFormat.YML | |
| 92 | |
| 93 # Default to XML for unknown extensions | |
| 94 return utils.FileFormat.XML | |
| 95 | |
| 96 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | |
| 97 """ | |
| 98 Loads a custom model from a file, either in JSON, XML, MAT, or YML format. | |
| 99 | |
| 100 Args: | |
| 101 file_path : The path to the file containing the custom model. | |
| 102 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | |
| 103 | |
| 104 Raises: | |
| 105 DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | |
| 106 | |
| 107 Returns: | |
| 108 cobra.Model : the model, if successfully opened. | |
| 109 """ | |
| 110 ext = ext if ext else file_path.ext | |
| 111 try: | |
| 112 if ext is utils.FileFormat.XML: | |
| 113 return cobra.io.read_sbml_model(file_path.show()) | |
| 114 | |
| 115 if ext is utils.FileFormat.JSON: | |
| 116 return cobra.io.load_json_model(file_path.show()) | |
| 117 | |
| 118 if ext is utils.FileFormat.MAT: | |
| 119 return cobra.io.load_matlab_model(file_path.show()) | |
| 120 | |
| 121 if ext is utils.FileFormat.YML: | |
| 122 return cobra.io.load_yaml_model(file_path.show()) | |
| 123 | |
| 124 except Exception as e: raise utils.DataErr(file_path, e.__str__()) | |
| 125 raise utils.DataErr( | |
| 126 file_path, | |
| 127 f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported." | |
| 128 ) | |
| 129 | |
| 130 | |
| 131 ###############################- FILE SAVING -################################ | |
| 132 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | |
| 133 """ | |
| 134 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | |
| 135 | |
| 136 Args: | |
| 137 data : the data to be written to the file. | |
| 138 file_path : the path to the .csv file. | |
| 139 fieldNames : the names of the fields (columns) in the .csv file. | |
| 140 | |
| 141 Returns: | |
| 142 None | |
| 143 """ | |
| 144 with open(file_path.show(), 'w', newline='') as csvfile: | |
| 145 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | |
| 146 writer.writeheader() | |
| 147 | |
| 148 for key, value in data.items(): | |
| 149 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
| 150 | |
| 151 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | |
| 152 """ | |
| 153 Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | |
| 154 | |
| 155 Args: | |
| 156 data : the data to be written to the file. | |
| 157 file_path : the path to the .csv file. | |
| 158 fieldNames : the names of the fields (columns) in the .csv file. | |
| 159 | |
| 160 Returns: | |
| 161 None | |
| 162 """ | |
| 163 with open(file_path, 'w', newline='') as csvfile: | |
| 164 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | |
| 165 writer.writeheader() | |
| 166 | |
| 167 for key, value in data.items(): | |
| 168 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | |
| 169 | |
| 170 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | |
| 171 """ | |
| 172 Save a pandas DataFrame as a tab-separated file, creating directories as needed. | |
| 173 | |
| 174 Args: | |
| 175 df: The DataFrame to write. | |
| 176 path: Destination file path (will be written as TSV). | |
| 177 | |
| 178 Raises: | |
| 179 DataErr: If writing the output fails for any reason. | |
| 180 | |
| 181 Returns: | |
| 182 None | |
| 183 """ | |
| 184 try: | |
| 185 os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | |
| 186 df.to_csv(path, sep="\t", index=False) | |
| 187 except Exception as e: | |
| 188 raise utils.DataErr(path, f"failed writing tabular output: {e}") | |
| 189 | |
| 190 def is_placeholder(gid) -> bool: | |
| 191 """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty).""" | |
| 192 if gid is None: | |
| 193 return True | |
| 194 s = str(gid).strip().lower() | |
| 195 return s in {"0", "", "na", "nan"} # lowercase for simple matching | |
| 196 | |
| 197 def sample_valid_gene_ids(genes, limit=10): | |
| 198 """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON).""" | |
| 199 out = [] | |
| 200 for g in genes: | |
| 201 gid = getattr(g, "id", getattr(g, "gene_id", g)) | |
| 202 if not is_placeholder(gid): | |
| 203 out.append(str(gid)) | |
| 204 if len(out) >= limit: | |
| 205 break | |
| 206 return out | |
| 207 | |
| 208 | |
| 209 ###############################- ENTRY POINT -################################ | |
| 210 def main(args:List[str] = None) -> None: | |
| 211 """ | |
| 212 Initialize and generate custom data based on the frontend input arguments. | |
| 213 | |
| 214 Returns: | |
| 215 None | |
| 216 """ | |
| 217 # Parse args from frontend (Galaxy XML) | |
| 218 global ARGS | |
| 219 ARGS = process_args(args) | |
| 220 | |
| 221 # Convert name from list to string (handles names with spaces) | |
| 222 if isinstance(ARGS.name, list): | |
| 223 ARGS.name = ' '.join(ARGS.name) | |
| 224 | |
| 225 if ARGS.input: | |
| 226 # Load a custom model from file with auto-detected format | |
| 227 detected_format = detect_file_format(ARGS.input) | |
| 228 model = load_custom_model(utils.FilePath.fromStrPath(ARGS.input), detected_format) | |
| 229 else: | |
| 230 # Load a built-in model | |
| 231 if not ARGS.model: | |
| 232 raise utils.ArgsErr("model", "either --model or --input must be provided", "None") | |
| 233 | |
| 234 try: | |
| 235 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2'] | |
| 236 except KeyError: | |
| 237 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | |
| 238 | |
| 239 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | |
| 240 try: | |
| 241 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
| 242 except Exception as e: | |
| 243 # Wrap/normalize load errors as DataErr for consistency | |
| 244 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | |
| 245 | |
| 246 # Determine final model name: explicit --name overrides, otherwise use the model id | |
| 247 | |
| 248 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | |
| 249 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
| 250 #ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") medium.csv uses underscores now | |
| 251 medium = df_mediums[[ARGS.medium_selector]] | |
| 252 medium = medium[ARGS.medium_selector].to_dict() | |
| 253 | |
| 254 # Reset all medium reactions lower bound to zero | |
| 255 for rxn_id, _ in model.medium.items(): | |
| 256 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | |
| 257 | |
| 258 # Apply selected medium uptake bounds (negative for uptake) | |
| 259 for reaction, value in medium.items(): | |
| 260 if value is not None: | |
| 261 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
| 262 | |
| 263 # Initialize translation_issues dictionary | |
| 264 translation_issues = {} | |
| 265 | |
| 266 if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default": | |
| 267 logging.basicConfig(level=logging.INFO) | |
| 268 logger = logging.getLogger(__name__) | |
| 269 | |
| 270 model, translation_issues = modelUtils.translate_model_genes( | |
| 271 model=model, | |
| 272 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}), | |
| 273 target_nomenclature=ARGS.gene_format, | |
| 274 source_nomenclature='HGNC_symbol', | |
| 275 logger=logger | |
| 276 ) | |
| 277 | |
| 278 if ARGS.input and ARGS.gene_format != "Default": | |
| 279 logging.basicConfig(level=logging.INFO) | |
| 280 logger = logging.getLogger(__name__) | |
| 281 | |
| 282 # Take a small, clean sample of gene IDs (skipping placeholders like 0) | |
| 283 ids_sample = sample_valid_gene_ids(model.genes, limit=10) | |
| 284 if not ids_sample: | |
| 285 raise utils.DataErr( | |
| 286 "Custom_model", | |
| 287 "No valid gene IDs found (many may be placeholders like 0)." | |
| 288 ) | |
| 289 | |
| 290 # Detect source nomenclature on the sample | |
| 291 types = [] | |
| 292 for gid in ids_sample: | |
| 293 try: | |
| 294 t = modelUtils.gene_type(gid, "Custom_model") | |
| 295 except Exception as e: | |
| 296 # Keep it simple: skip problematic IDs | |
| 297 logger.debug(f"gene_type failed for {gid}: {e}") | |
| 298 t = None | |
| 299 if t: | |
| 300 types.append(t) | |
| 301 | |
| 302 if not types: | |
| 303 raise utils.DataErr( | |
| 304 "Custom_model", | |
| 305 "Could not detect a known gene nomenclature from the sample." | |
| 306 ) | |
| 307 | |
| 308 unique_types = set(types) | |
| 309 if len(unique_types) > 1: | |
| 310 raise utils.DataErr( | |
| 311 "Custom_model", | |
| 312 "Mixed or inconsistent gene nomenclatures detected. " | |
| 313 "Please unify them before converting." | |
| 314 ) | |
| 315 | |
| 316 source_nomenclature = types[0] | |
| 317 | |
| 318 # Convert only if needed | |
| 319 if source_nomenclature != ARGS.gene_format: | |
| 320 model, translation_issues = modelUtils.translate_model_genes( | |
| 321 model=model, | |
| 322 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}), | |
| 323 target_nomenclature=ARGS.gene_format, | |
| 324 source_nomenclature=source_nomenclature, | |
| 325 logger=logger | |
| 326 ) | |
| 327 | |
| 328 # generate data using unified function | |
| 329 if not ARGS.out_tabular: | |
| 330 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | |
| 331 | |
| 332 merged = modelUtils.export_model_to_tabular( | |
| 333 model=model, | |
| 334 output_path=ARGS.out_tabular, | |
| 335 translation_issues=translation_issues, | |
| 336 include_objective=True, | |
| 337 save_function=save_as_tabular_df | |
| 338 ) | |
| 339 expected = ARGS.out_tabular | |
| 340 | |
| 341 # verify output exists and non-empty | |
| 342 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | |
| 343 raise utils.DataErr(expected, "Output not created or empty") | |
| 344 | |
| 345 print("Completed successfully") | |
| 346 | |
| 347 if __name__ == '__main__': | |
| 348 | |
| 349 main() |
