Mercurial > repos > bimib > cobraxy
comparison COBRAxy/flux_to_map.py @ 93:7e703e546998 draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 11:41:34 +0000 |
parents | 41f35c2f0c7b |
children | 3fca9b568faf |
comparison
equal
deleted
inserted
replaced
92:fdf713bb5772 | 93:7e703e546998 |
---|---|
1 from __future__ import division | |
2 import csv | |
3 from enum import Enum | |
4 import re | |
5 import sys | |
6 import numpy as np | |
7 import pandas as pd | |
8 import itertools as it | |
9 import scipy.stats as st | |
10 import lxml.etree as ET | |
11 import math | |
12 import utils.general_utils as utils | |
13 from PIL import Image | |
14 import os | |
15 import copy | |
16 import argparse | |
17 import pyvips | |
18 from PIL import Image, ImageDraw, ImageFont | |
19 from typing import Tuple, Union, Optional, List, Dict | |
20 import matplotlib.pyplot as plt | |
21 | |
22 ERRORS = [] | |
23 ########################## argparse ########################################## | |
24 ARGS :argparse.Namespace | |
25 def process_args() -> argparse.Namespace: | |
26 """ | |
27 Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | |
28 | |
29 Args: | |
30 args : Always obtained (in file) from sys.argv | |
31 | |
32 Returns: | |
33 Namespace : An object containing the parsed arguments | |
34 """ | |
35 parser = argparse.ArgumentParser( | |
36 usage = "%(prog)s [options]", | |
37 description = "process some value's genes to create a comparison's map.") | |
38 | |
39 #General: | |
40 parser.add_argument( | |
41 '-td', '--tool_dir', | |
42 type = str, | |
43 required = True, | |
44 help = 'your tool directory') | |
45 | |
46 parser.add_argument('-on', '--control', type = str) | |
47 parser.add_argument('-ol', '--out_log', help = "Output log") | |
48 | |
49 #Computation details: | |
50 parser.add_argument( | |
51 '-co', '--comparison', | |
52 type = str, | |
53 default = '1vs1', | |
54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
55 | |
56 parser.add_argument( | |
57 '-pv' ,'--pValue', | |
58 type = float, | |
59 default = 0.1, | |
60 help = 'P-Value threshold (default: %(default)s)') | |
61 | |
62 parser.add_argument( | |
63 '-fc', '--fChange', | |
64 type = float, | |
65 default = 1.5, | |
66 help = 'Fold-Change threshold (default: %(default)s)') | |
67 | |
68 | |
69 parser.add_argument( | |
70 '-op', '--option', | |
71 type = str, | |
72 choices = ['datasets', 'dataset_class'], | |
73 help='dataset or dataset and class') | |
74 | |
75 parser.add_argument( | |
76 '-idf', '--input_data_fluxes', | |
77 type = str, | |
78 help = 'input dataset fluxes') | |
79 | |
80 parser.add_argument( | |
81 '-icf', '--input_class_fluxes', | |
82 type = str, | |
83 help = 'sample group specification fluxes') | |
84 | |
85 parser.add_argument( | |
86 '-idsf', '--input_datas_fluxes', | |
87 type = str, | |
88 nargs = '+', | |
89 help = 'input datasets fluxes') | |
90 | |
91 parser.add_argument( | |
92 '-naf', '--names_fluxes', | |
93 type = str, | |
94 nargs = '+', | |
95 help = 'input names fluxes') | |
96 | |
97 #Output: | |
98 parser.add_argument( | |
99 "-gs", "--generate_svg", | |
100 type = utils.Bool("generate_svg"), default = True, | |
101 help = "choose whether to generate svg") | |
102 | |
103 parser.add_argument( | |
104 "-gp", "--generate_pdf", | |
105 type = utils.Bool("generate_pdf"), default = True, | |
106 help = "choose whether to generate pdf") | |
107 | |
108 parser.add_argument( | |
109 '-cm', '--custom_map', | |
110 type = str, | |
111 help='custom map to use') | |
112 | |
113 parser.add_argument( | |
114 '-mc', '--choice_map', | |
115 type = utils.Model, default = utils.Model.HMRcore, | |
116 choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | |
117 | |
118 parser.add_argument( | |
119 '-colorm', '--color_map', | |
120 type = str, | |
121 choices = ["jet", "viridis"]) | |
122 | |
123 args :argparse.Namespace = parser.parse_args() | |
124 args.net = True | |
125 | |
126 return args | |
127 | |
128 ############################ dataset input #################################### | |
129 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
130 """ | |
131 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | |
132 | |
133 Args: | |
134 data : filepath of a dataset (from frontend input params or literals upon calling) | |
135 name : name associated with the dataset (from frontend input params or literals upon calling) | |
136 | |
137 Returns: | |
138 pd.DataFrame : dataset in a runtime operable shape | |
139 | |
140 Raises: | |
141 sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | |
142 """ | |
143 try: | |
144 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
145 except pd.errors.EmptyDataError: | |
146 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
147 if len(dataset.columns) < 2: | |
148 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
149 return dataset | |
150 | |
151 ############################ dataset name ##################################### | |
152 def name_dataset(name_data :str, count :int) -> str: | |
153 """ | |
154 Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | |
155 | |
156 Args: | |
157 name_data : name associated with the dataset (from frontend input params) | |
158 count : counter from 1 to make these names unique (external) | |
159 | |
160 Returns: | |
161 str : the name made unique | |
162 """ | |
163 if str(name_data) == 'Dataset': | |
164 return str(name_data) + '_' + str(count) | |
165 else: | |
166 return str(name_data) | |
167 | |
168 ############################ map_methods ###################################### | |
169 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | |
170 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | |
171 """ | |
172 Calculates the fold change between two gene expression values. | |
173 | |
174 Args: | |
175 avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | |
176 | |
177 Returns: | |
178 FoldChange : | |
179 0 : when both input values are 0 | |
180 "-INF" : when avg1 is 0 | |
181 "INF" : when avg2 is 0 | |
182 float : for any other combination of values | |
183 """ | |
184 if avg1 == 0 and avg2 == 0: | |
185 return 0 | |
186 elif avg1 == 0: | |
187 return '-INF' | |
188 elif avg2 == 0: | |
189 return 'INF' | |
190 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | |
191 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | |
192 | |
193 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
194 """ | |
195 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
196 | |
197 Args: | |
198 l : current style string of an SVG element | |
199 col : new value for the "stroke" style property | |
200 width : new value for the "stroke-width" style property | |
201 dash : new value for the "stroke-dasharray" style property | |
202 | |
203 Returns: | |
204 str : the fixed style string | |
205 """ | |
206 tmp = l.split(';') | |
207 flag_col = False | |
208 flag_width = False | |
209 flag_dash = False | |
210 for i in range(len(tmp)): | |
211 if tmp[i].startswith('stroke:'): | |
212 tmp[i] = 'stroke:' + col | |
213 flag_col = True | |
214 if tmp[i].startswith('stroke-width:'): | |
215 tmp[i] = 'stroke-width:' + width | |
216 flag_width = True | |
217 if tmp[i].startswith('stroke-dasharray:'): | |
218 tmp[i] = 'stroke-dasharray:' + dash | |
219 flag_dash = True | |
220 if not flag_col: | |
221 tmp.append('stroke:' + col) | |
222 if not flag_width: | |
223 tmp.append('stroke-width:' + width) | |
224 if not flag_dash: | |
225 tmp.append('stroke-dasharray:' + dash) | |
226 return ';'.join(tmp) | |
227 | |
228 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | |
229 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
230 """ | |
231 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
232 | |
233 Args: | |
234 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
235 core_map : SVG map to modify | |
236 threshold_P_V : threshold for a p-value to be considered significant | |
237 threshold_F_C : threshold for a fold change value to be considered significant | |
238 max_z_score : highest z-score (absolute value) | |
239 | |
240 Returns: | |
241 ET.ElementTree : the modified core_map | |
242 | |
243 Side effects: | |
244 core_map : mut | |
245 """ | |
246 maxT = 12 | |
247 minT = 2 | |
248 grey = '#BEBEBE' | |
249 blue = '#6495ed' | |
250 red = '#ecac68' | |
251 for el in core_map.iter(): | |
252 el_id = str(el.get('id')) | |
253 if el_id.startswith('R_'): | |
254 tmp = d.get(el_id[2:]) | |
255 if tmp != None: | |
256 p_val :float = tmp[0] | |
257 f_c = tmp[1] | |
258 z_score = tmp[2] | |
259 if p_val < threshold_P_V: | |
260 if not isinstance(f_c, str): | |
261 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | |
262 col = grey | |
263 width = str(minT) | |
264 else: | |
265 if f_c < 0: | |
266 col = blue | |
267 elif f_c > 0: | |
268 col = red | |
269 width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | |
270 else: | |
271 if f_c == '-INF': | |
272 col = blue | |
273 elif f_c == 'INF': | |
274 col = red | |
275 width = str(maxT) | |
276 dash = 'none' | |
277 else: | |
278 dash = '5,5' | |
279 col = grey | |
280 width = str(minT) | |
281 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
282 return core_map | |
283 | |
284 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | |
285 """ | |
286 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | |
287 not enforced, if more than one element with the exact ID is found only the first will be returned. | |
288 | |
289 Args: | |
290 reactionId (str): exact ID of the requested element. | |
291 metabMap (ET.ElementTree): metabolic map containing the element. | |
292 | |
293 Returns: | |
294 utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | |
295 """ | |
296 return utils.Result.Ok( | |
297 f"//*[@id=\"{reactionId}\"]").map( | |
298 lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | |
299 lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | |
300 # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | |
301 | |
302 def styleMapElement(element :ET.Element, styleStr :str) -> None: | |
303 currentStyles :str = element.get("style", "") | |
304 if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | |
305 currentStyles = ';'.join(currentStyles.split(';')[:-3]) | |
306 | |
307 element.set("style", currentStyles + styleStr) | |
308 | |
309 class ReactionDirection(Enum): | |
310 Unknown = "" | |
311 Direct = "_F" | |
312 Inverse = "_B" | |
313 | |
314 @classmethod | |
315 def fromDir(cls, s :str) -> "ReactionDirection": | |
316 # vvv as long as there's so few variants I actually condone the if spam: | |
317 if s == ReactionDirection.Direct.value: return ReactionDirection.Direct | |
318 if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | |
319 return ReactionDirection.Unknown | |
320 | |
321 @classmethod | |
322 def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | |
323 return ReactionDirection.fromDir(reactionId[-2:]) | |
324 | |
325 def getArrowBodyElementId(reactionId :str) -> str: | |
326 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
327 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | |
328 return f"R_{reactionId}" | |
329 | |
330 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | |
331 """ | |
332 We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | |
333 | |
334 Args: | |
335 reactionId : the provided reaction ID. | |
336 | |
337 Returns: | |
338 Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | |
339 """ | |
340 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
341 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | |
342 return f"F_{reactionId}", f"B_{reactionId}" | |
343 | |
344 class ArrowColor(Enum): | |
345 """ | |
346 Encodes possible arrow colors based on their meaning in the enrichment process. | |
347 """ | |
348 Invalid = "#BEBEBE" # gray, fold-change under treshold | |
349 Transparent = "#ffffff00" # white, not significant p-value | |
350 UpRegulated = "#ecac68" # red, up-regulated reaction | |
351 DownRegulated = "#6495ed" # blue, down-regulated reaction | |
352 | |
353 UpRegulatedInv = "#FF0000" | |
354 # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | |
355 # conflicting enrichment in the two directions. | |
356 | |
357 DownRegulatedInv = "#0000FF" | |
358 # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | |
359 # conflicting enrichment in the two directions. | |
360 | |
361 @classmethod | |
362 def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | |
363 colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | |
364 return colors[useAltColor] | |
365 | |
366 def __str__(self) -> str: return self.value | |
367 | |
368 class Arrow: | |
369 """ | |
370 Models the properties of a reaction arrow that change based on enrichment. | |
371 """ | |
372 MIN_W = 2 | |
373 MAX_W = 12 | |
374 | |
375 def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | |
376 """ | |
377 (Private) Initializes an instance of Arrow. | |
378 | |
379 Args: | |
380 width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | |
381 col : color of the arrow. | |
382 isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | |
383 | |
384 Returns: | |
385 None : practically, a Arrow instance. | |
386 """ | |
387 self.w = width | |
388 self.col = col | |
389 self.dash = isDashed | |
390 | |
391 def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | |
392 if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | |
393 ERRORS.append(reactionId) | |
394 | |
395 def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | |
396 if not mindReactionDir: | |
397 return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
398 | |
399 # Now we style the arrow head(s): | |
400 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
401 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
402 if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
403 | |
404 def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: | |
405 | |
406 self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
407 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
408 | |
409 if(isNegative): | |
410 self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
411 self.col = ArrowColor.Transparent | |
412 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | |
413 else: | |
414 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
415 self.col = ArrowColor.Transparent | |
416 self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | |
417 | |
418 | |
419 | |
420 def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | |
421 """ | |
422 Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | |
423 | |
424 Args: | |
425 reactionId: the reaction ID, as encoded in the dataset. | |
426 mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | |
427 | |
428 Returns: | |
429 str : the ID of an arrow's body or tips in the map. | |
430 """ | |
431 # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | |
432 if not mindReactionDir: return "R_" + reactionId | |
433 | |
434 #TODO: this is clearly something we need to make consistent in fluxes | |
435 return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | |
436 | |
437 def toStyleStr(self, *, downSizedForTips = False) -> str: | |
438 """ | |
439 Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | |
440 | |
441 Returns: | |
442 str : the styles string. | |
443 """ | |
444 width = self.w | |
445 if downSizedForTips: width *= 0.8 | |
446 return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | |
447 | |
448 # vvv These constants could be inside the class itself a static properties, but python | |
449 # was built by brainless organisms so here we are! | |
450 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | |
451 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | |
452 | |
453 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | |
454 """ | |
455 Applies fluxes enrichment results to the provided metabolic map. | |
456 | |
457 Args: | |
458 fluxesEnrichmentRes : fluxes enrichment results. | |
459 metabMap : the metabolic map to edit. | |
460 maxNumericZScore : biggest finite z-score value found. | |
461 | |
462 Side effects: | |
463 metabMap : mut | |
464 | |
465 Returns: | |
466 None | |
467 """ | |
468 for reactionId, values in fluxesEnrichmentRes.items(): | |
469 pValue = values[0] | |
470 foldChange = values[1] | |
471 z_score = values[2] | |
472 | |
473 if isinstance(foldChange, str): foldChange = float(foldChange) | |
474 if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | |
475 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | |
476 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
477 | |
478 continue | |
479 | |
480 if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | |
481 INVALID_ARROW.styleReactionElements(metabMap, reactionId) | |
482 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
483 | |
484 continue | |
485 | |
486 width = Arrow.MAX_W | |
487 if not math.isinf(foldChange): | |
488 try: | |
489 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | |
490 | |
491 except ZeroDivisionError: pass | |
492 | |
493 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | |
494 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | |
495 # continue | |
496 | |
497 #reactionId = reactionId[:-3] # Remove "_RV" | |
498 | |
499 inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | |
500 if inversionScore == 2: foldChange *= -1 | |
501 # ^^^ Style the inverse direction with the opposite sign netValue | |
502 | |
503 # If the score is 1 (opposite signs) we use alternative colors vvv | |
504 arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | |
505 | |
506 # vvv These 2 if statements can both be true and can both happen | |
507 if ARGS.net: # style arrow head(s): | |
508 arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | |
509 arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") | |
510 | |
511 arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
512 | |
513 | |
514 ############################ split class ###################################### | |
515 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | |
516 """ | |
517 Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | |
518 | |
519 Args: | |
520 classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | |
521 resolve_rules : a :dict containing :float data | |
522 | |
523 Returns: | |
524 dict : the dict with data grouped by class | |
525 | |
526 Side effects: | |
527 classes : mut | |
528 """ | |
529 class_pat :Dict[str, List[List[float]]] = {} | |
530 for i in range(len(classes)): | |
531 classe :str = classes.iloc[i, 1] | |
532 if pd.isnull(classe): continue | |
533 | |
534 l :List[List[float]] = [] | |
535 for j in range(i, len(classes)): | |
536 if classes.iloc[j, 1] == classe: | |
537 pat_id :str = classes.iloc[j, 0] | |
538 tmp = resolve_rules.get(pat_id, None) | |
539 if tmp != None: | |
540 l.append(tmp) | |
541 classes.iloc[j, 1] = None | |
542 | |
543 if l: | |
544 class_pat[classe] = list(map(list, zip(*l))) | |
545 continue | |
546 | |
547 utils.logWarning( | |
548 f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | |
549 | |
550 return class_pat | |
551 | |
552 ############################ conversion ############################################## | |
553 #conversion from svg to png | |
554 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | |
555 """ | |
556 Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | |
557 | |
558 Args: | |
559 svg_path : path to SVG file | |
560 png_path : path for new PNG file | |
561 dpi : dots per inch of the generated PNG | |
562 scale : scaling factor for the generated PNG, computed internally when a size is provided | |
563 size : final effective width of the generated PNG | |
564 | |
565 Returns: | |
566 None | |
567 """ | |
568 if size: | |
569 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | |
570 scale = size / image.width | |
571 image = image.resize(scale) | |
572 else: | |
573 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | |
574 | |
575 white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | |
576 white_background = white_background.affine([scale, 0, 0, scale]) | |
577 | |
578 if white_background.bands != image.bands: | |
579 white_background = white_background.extract_band(0) | |
580 | |
581 composite_image = white_background.composite2(image, 'over') | |
582 composite_image.write_to_file(png_path.show()) | |
583 | |
584 #funzione unica, lascio fuori i file e li passo in input | |
585 #conversion from png to pdf | |
586 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | |
587 """ | |
588 Internal utility to convert a PNG to PDF to aid from SVG conversion. | |
589 | |
590 Args: | |
591 png_file : path to PNG file | |
592 pdf_file : path to new PDF file | |
593 | |
594 Returns: | |
595 None | |
596 """ | |
597 image = Image.open(png_file.show()) | |
598 image = image.convert("RGB") | |
599 image.save(pdf_file.show(), "PDF", resolution=100.0) | |
600 | |
601 #function called to reduce redundancy in the code | |
602 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | |
603 """ | |
604 Converts the SVG map at the provided path to PDF. | |
605 | |
606 Args: | |
607 file_svg : path to SVG file | |
608 file_png : path to PNG file | |
609 file_pdf : path to new PDF file | |
610 | |
611 Returns: | |
612 None | |
613 """ | |
614 svg_to_png_with_background(file_svg, file_png) | |
615 try: | |
616 convert_png_to_pdf(file_png, file_pdf) | |
617 print(f'PDF file {file_pdf.filePath} successfully generated.') | |
618 | |
619 except Exception as e: | |
620 raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | |
621 | |
622 ############################ map ############################################## | |
623 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | |
624 """ | |
625 Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | |
626 "result/" folder, used by this tool for output files in collections. | |
627 | |
628 Args: | |
629 dataset1Name : _description_ | |
630 dataset2Name : _description_. Defaults to "rest". | |
631 details : _description_ | |
632 ext : _description_ | |
633 | |
634 Returns: | |
635 utils.FilePath : _description_ | |
636 """ | |
637 # This function returns a util data structure but is extremely specific to this module. | |
638 # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | |
639 # TODO: until a third tool with multiple outputs appears before porting this to utils. | |
640 return utils.FilePath( | |
641 f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | |
642 # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | |
643 # all output files: I don't care, this was never the performance bottleneck of the tool and | |
644 # there is no other net gain in saving and re-using the built string. | |
645 ext, | |
646 prefix = "result") | |
647 | |
648 FIELD_NOT_AVAILABLE = '/' | |
649 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | |
650 fieldsAmt = len(fieldNames) | |
651 with open(outPath.show(), "w", newline = "") as fd: | |
652 writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | |
653 writer.writeheader() | |
654 | |
655 for row in rows: | |
656 sizeMismatch = fieldsAmt - len(row) | |
657 if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | |
658 writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | |
659 | |
660 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | |
661 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: | |
662 fieldNames = ["ids", "P_Value", "fold change"] | |
663 fieldNames.extend(["average_1", "average_2"]) | |
664 | |
665 writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | |
666 | |
667 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: | |
668 # this function compiles the things always in common between comparison modes after enrichment. | |
669 # TODO: organize, name better. | |
670 writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | |
671 for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | |
672 applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) | |
673 | |
674 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | |
675 """ | |
676 Computes the statistical significance score (P-value) of the comparison between coherent data | |
677 from two datasets. The data is supposed to, in both datasets: | |
678 - be related to the same reaction ID; | |
679 - be ordered by sample, such that the item at position i in both lists is related to the | |
680 same sample or cell line. | |
681 | |
682 Args: | |
683 dataset1Data : data from the 1st dataset. | |
684 dataset2Data : data from the 2nd dataset. | |
685 | |
686 Returns: | |
687 tuple: (P-value, Z-score) | |
688 - P-value from a Kolmogorov-Smirnov test on the provided data. | |
689 - Z-score of the difference between means of the two datasets. | |
690 """ | |
691 # Perform Kolmogorov-Smirnov test | |
692 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
693 | |
694 # Calculate means and standard deviations | |
695 mean1 = np.mean(dataset1Data) | |
696 mean2 = np.mean(dataset2Data) | |
697 std1 = np.std(dataset1Data, ddof=1) | |
698 std2 = np.std(dataset2Data, ddof=1) | |
699 | |
700 n1 = len(dataset1Data) | |
701 n2 = len(dataset2Data) | |
702 | |
703 # Calculate Z-score | |
704 z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | |
705 | |
706 return p_value, z_score | |
707 | |
708 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | |
709 #TODO: the following code still suffers from "dumbvarnames-osis" | |
710 tmp :Dict[str, List[Union[float, FoldChange]]] = {} | |
711 count = 0 | |
712 max_z_score = 0 | |
713 | |
714 for l1, l2 in zip(dataset1Data, dataset2Data): | |
715 reactId = ids[count] | |
716 count += 1 | |
717 if not reactId: continue # we skip ids that have already been processed | |
718 | |
719 try: | |
720 p_value, z_score = computePValue(l1, l2) | |
721 avg1 = sum(l1) / len(l1) | |
722 avg2 = sum(l2) / len(l2) | |
723 avg = fold_change(avg1, avg2) | |
724 if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | |
725 tmp[reactId] = [float(p_value), avg, z_score, avg1, avg2] | |
726 except (TypeError, ZeroDivisionError): continue | |
727 | |
728 return tmp, max_z_score | |
729 | |
730 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str]) -> None: | |
731 """ | |
732 Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | |
733 provided metabolic map. | |
734 | |
735 Args: | |
736 metabMap : SVG map to modify. | |
737 class_pat : the clustered data. | |
738 ids : ids for data association. | |
739 | |
740 | |
741 Returns: | |
742 None | |
743 | |
744 Raises: | |
745 sys.exit : if there are less than 2 classes for comparison | |
746 | |
747 Side effects: | |
748 metabMap : mut | |
749 ids : mut | |
750 """ | |
751 class_pat = { k.strip() : v for k, v in class_pat.items() } | |
752 #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | |
753 if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | |
754 | |
755 if ARGS.comparison == "manyvsmany": | |
756 for i, j in it.combinations(class_pat.keys(), 2): | |
757 #TODO: these 2 functions are always called in pair and in this order and need common data, | |
758 # some clever refactoring would be appreciated. | |
759 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | |
760 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j) | |
761 | |
762 elif ARGS.comparison == "onevsrest": | |
763 for single_cluster in class_pat.keys(): | |
764 t :List[List[List[float]]] = [] | |
765 for k in class_pat.keys(): | |
766 if k != single_cluster: | |
767 t.append(class_pat.get(k)) | |
768 | |
769 rest :List[List[float]] = [] | |
770 for i in t: | |
771 rest = rest + i | |
772 | |
773 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | |
774 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster) | |
775 | |
776 elif ARGS.comparison == "onevsmany": | |
777 controlItems = class_pat.get(ARGS.control) | |
778 for otherDataset in class_pat.keys(): | |
779 if otherDataset == ARGS.control: continue | |
780 | |
781 comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | |
782 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset) | |
783 | |
784 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | |
785 svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG) | |
786 utils.writeSvg(svgFilePath, core_map) | |
787 | |
788 if ARGS.generate_pdf: | |
789 pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG) | |
790 pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF) | |
791 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
792 | |
793 if not ARGS.generate_svg: os.remove(svgFilePath.show()) | |
794 | |
795 ClassPat = Dict[str, List[List[float]]] | |
796 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | |
797 # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | |
798 # for the sake of everyone's sanity. | |
799 class_pat :ClassPat = {} | |
800 if ARGS.option == 'datasets': | |
801 num = 1 #TODO: the dataset naming function could be a generator | |
802 for path, name in zip(datasetsPaths, names): | |
803 name = name_dataset(name, num) | |
804 resolve_rules_float, ids = getDatasetValues(path, name) | |
805 if resolve_rules_float != None: | |
806 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | |
807 | |
808 num += 1 | |
809 | |
810 elif ARGS.option == "dataset_class": | |
811 classes = read_dataset(classPath, "class") | |
812 classes = classes.astype(str) | |
813 | |
814 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | |
815 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | |
816 | |
817 return ids, class_pat | |
818 #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | |
819 | |
820 #TODO: create these damn args as FilePath objects | |
821 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | |
822 """ | |
823 Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | |
824 | |
825 Args: | |
826 datasetPath : path to the dataset | |
827 datasetName (str): dataset name, used in error reporting | |
828 | |
829 Returns: | |
830 Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | |
831 """ | |
832 dataset = read_dataset(datasetPath, datasetName) | |
833 IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | |
834 | |
835 dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | |
836 return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | |
837 | |
838 def rgb_to_hex(rgb): | |
839 """ | |
840 Convert RGB values (0-1 range) to hexadecimal color format. | |
841 | |
842 Args: | |
843 rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). | |
844 | |
845 Returns: | |
846 str: The color in hexadecimal format (e.g., '#ff0000' for red). | |
847 """ | |
848 # Convert RGB values (0-1 range) to hexadecimal format | |
849 rgb = (np.array(rgb) * 255).astype(int) | |
850 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | |
851 | |
852 | |
853 | |
854 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | |
855 """ | |
856 Create and save an image of the colormap showing the gradient and its range. | |
857 | |
858 Args: | |
859 min_value (float): The minimum value of the colormap range. | |
860 max_value (float): The maximum value of the colormap range. | |
861 filename (str): The filename for saving the image. | |
862 """ | |
863 | |
864 # Create a colormap using matplotlib | |
865 cmap = plt.get_cmap(colorMap) | |
866 | |
867 # Create a figure and axis | |
868 fig, ax = plt.subplots(figsize=(6, 1)) | |
869 fig.subplots_adjust(bottom=0.5) | |
870 | |
871 # Create a gradient image | |
872 gradient = np.linspace(0, 1, 256) | |
873 gradient = np.vstack((gradient, gradient)) | |
874 | |
875 # Add min and max value annotations | |
876 ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') | |
877 ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') | |
878 | |
879 | |
880 # Display the gradient image | |
881 ax.imshow(gradient, aspect='auto', cmap=cmap) | |
882 ax.set_axis_off() | |
883 | |
884 # Save the image | |
885 plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) | |
886 plt.close() | |
887 pass | |
888 | |
889 def min_nonzero_abs(arr): | |
890 # Flatten the array and filter out zeros, then find the minimum of the remaining values | |
891 non_zero_elements = np.abs(arr)[np.abs(arr) > 0] | |
892 return np.min(non_zero_elements) if non_zero_elements.size > 0 else None | |
893 | |
894 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: | |
895 """ | |
896 Compute and visualize the metabolic map based on mean and median of the input fluxes. | |
897 The fluxes are normalised across classes/datasets and visualised using the given colormap. | |
898 | |
899 Args: | |
900 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
901 class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. | |
902 ids (List[str]): A list of reaction IDs to be used for coloring arrows. | |
903 | |
904 Returns: | |
905 None | |
906 """ | |
907 # Create copies only if they are needed | |
908 metabMap_mean = copy.deepcopy(metabMap) | |
909 metabMap_median = copy.deepcopy(metabMap) | |
910 | |
911 # Compute medians and means | |
912 medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()} | |
913 means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()} | |
914 | |
915 # Normalize medians and means | |
916 max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) | |
917 max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) | |
918 | |
919 min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) | |
920 min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) | |
921 | |
922 medians = {key: median/max_flux_medians for key, median in medians.items()} | |
923 means = {key: mean/max_flux_means for key, mean in means.items()} | |
924 | |
925 save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix="result"), colormap) | |
926 save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix="result"), colormap) | |
927 | |
928 cmap = plt.get_cmap(colormap) | |
929 | |
930 for key in class_pat: | |
931 # Create color mappings for median and mean | |
932 colors_median = { | |
933 rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe' #grey blocked | |
934 for i, rxn_id in enumerate(ids) | |
935 } | |
936 | |
937 colors_mean = { | |
938 rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe' #grey blocked | |
939 for i, rxn_id in enumerate(ids) | |
940 } | |
941 | |
942 for i, rxn_id in enumerate(ids): | |
943 isNegative = medians[key][i] < 0 | |
944 | |
945 # Apply median arrows | |
946 apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative) | |
947 | |
948 isNegative = means[key][i] < 0 | |
949 # Apply mean arrows | |
950 apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative) | |
951 | |
952 # Save and convert the SVG files | |
953 save_and_convert(metabMap_mean, "mean", key) | |
954 save_and_convert(metabMap_median, "median", key) | |
955 | |
956 def apply_arrow(metabMap, rxn_id, color, isNegative): | |
957 """ | |
958 Apply an arrow to a specific reaction in the metabolic map with a given color. | |
959 | |
960 Args: | |
961 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
962 rxn_id (str): The ID of the reaction to which the arrow will be applied. | |
963 color (str): The color of the arrow in hexadecimal format. | |
964 | |
965 Returns: | |
966 None | |
967 """ | |
968 arrow = Arrow(width=5, col=color) | |
969 arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) | |
970 pass | |
971 | |
972 def save_and_convert(metabMap, map_type, key): | |
973 """ | |
974 Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. | |
975 | |
976 Args: | |
977 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
978 map_type (str): The type of map ('mean' or 'median'). | |
979 key (str): The key identifying the specific map. | |
980 | |
981 Returns: | |
982 None | |
983 """ | |
984 svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix="result") | |
985 utils.writeSvg(svgFilePath, metabMap) | |
986 if ARGS.generate_pdf: | |
987 pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix="result") | |
988 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix="result") | |
989 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
990 if not ARGS.generate_svg: | |
991 os.remove(svgFilePath.show()) | |
992 | |
993 | |
994 | |
995 | |
996 ############################ MAIN ############################################# | |
997 def main() -> None: | |
998 """ | |
999 Initializes everything and sets the program in motion based on the fronted input arguments. | |
1000 | |
1001 Returns: | |
1002 None | |
1003 | |
1004 Raises: | |
1005 sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | |
1006 """ | |
1007 | |
1008 global ARGS | |
1009 ARGS = process_args() | |
1010 | |
1011 if os.path.isdir('result') == False: os.makedirs('result') | |
1012 | |
1013 core_map :ET.ElementTree = ARGS.choice_map.getMap( | |
1014 ARGS.tool_dir, | |
1015 utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | |
1016 # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | |
1017 # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | |
1018 # solution can be derived from my comment in FilePath.fromStrPath | |
1019 | |
1020 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) | |
1021 | |
1022 if(ARGS.choice_map == utils.Model.HMRcore): | |
1023 temp_map = utils.Model.HMRcore_no_legend | |
1024 computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | |
1025 elif(ARGS.choice_map == utils.Model.ENGRO2): | |
1026 temp_map = utils.Model.ENGRO2_no_legend | |
1027 computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | |
1028 else: | |
1029 computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) | |
1030 | |
1031 | |
1032 computeEnrichment(core_map, class_pat, ids) | |
1033 | |
1034 # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this | |
1035 if ARGS.comparison == "manyvsmany": | |
1036 for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map) | |
1037 return | |
1038 | |
1039 if ARGS.comparison == "onevsrest": | |
1040 for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map) | |
1041 return | |
1042 | |
1043 for otherDataset in class_pat.keys(): | |
1044 if otherDataset != ARGS.control: createOutputMaps(i, j, core_map) | |
1045 | |
1046 if not ERRORS: return | |
1047 utils.logWarning( | |
1048 f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | |
1049 ARGS.out_log) | |
1050 | |
1051 print('Execution succeded') | |
1052 | |
1053 ############################################################################### | |
1054 if __name__ == "__main__": | |
1055 main() |