Mercurial > repos > bimib > cobraxy
comparison COBRAxy/marea_cluster.py @ 93:7e703e546998 draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 11:41:34 +0000 |
parents | 41f35c2f0c7b |
children | 3fca9b568faf |
comparison
equal
deleted
inserted
replaced
92:fdf713bb5772 | 93:7e703e546998 |
---|---|
1 # -*- coding: utf-8 -*- | |
2 """ | |
3 Created on Mon Jun 3 19:51:00 2019 | |
4 @author: Narger | |
5 """ | |
6 | |
7 import sys | |
8 import argparse | |
9 import os | |
10 import numpy as np | |
11 import pandas as pd | |
12 from sklearn.datasets import make_blobs | |
13 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
14 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | |
15 import matplotlib | |
16 matplotlib.use('agg') | |
17 import matplotlib.pyplot as plt | |
18 import scipy.cluster.hierarchy as shc | |
19 import matplotlib.cm as cm | |
20 from typing import Optional, Dict, List | |
21 | |
22 ################################# process args ############################### | |
23 def process_args(args :List[str]) -> argparse.Namespace: | |
24 """ | |
25 Processes command-line arguments. | |
26 | |
27 Args: | |
28 args (list): List of command-line arguments. | |
29 | |
30 Returns: | |
31 Namespace: An object containing parsed arguments. | |
32 """ | |
33 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
34 description = 'process some value\'s' + | |
35 ' genes to create class.') | |
36 | |
37 parser.add_argument('-ol', '--out_log', | |
38 help = "Output log") | |
39 | |
40 parser.add_argument('-in', '--input', | |
41 type = str, | |
42 help = 'input dataset') | |
43 | |
44 parser.add_argument('-cy', '--cluster_type', | |
45 type = str, | |
46 choices = ['kmeans', 'dbscan', 'hierarchy'], | |
47 default = 'kmeans', | |
48 help = 'choose clustering algorythm') | |
49 | |
50 parser.add_argument('-k1', '--k_min', | |
51 type = int, | |
52 default = 2, | |
53 help = 'choose minimun cluster number to be generated') | |
54 | |
55 parser.add_argument('-k2', '--k_max', | |
56 type = int, | |
57 default = 7, | |
58 help = 'choose maximum cluster number to be generated') | |
59 | |
60 parser.add_argument('-el', '--elbow', | |
61 type = str, | |
62 default = 'false', | |
63 choices = ['true', 'false'], | |
64 help = 'choose if you want to generate an elbow plot for kmeans') | |
65 | |
66 parser.add_argument('-si', '--silhouette', | |
67 type = str, | |
68 default = 'false', | |
69 choices = ['true', 'false'], | |
70 help = 'choose if you want silhouette plots') | |
71 | |
72 parser.add_argument('-td', '--tool_dir', | |
73 type = str, | |
74 required = True, | |
75 help = 'your tool directory') | |
76 | |
77 parser.add_argument('-ms', '--min_samples', | |
78 type = float, | |
79 help = 'min samples for dbscan (optional)') | |
80 | |
81 parser.add_argument('-ep', '--eps', | |
82 type = float, | |
83 help = 'eps for dbscan (optional)') | |
84 | |
85 parser.add_argument('-bc', '--best_cluster', | |
86 type = str, | |
87 help = 'output of best cluster tsv') | |
88 | |
89 | |
90 | |
91 args = parser.parse_args() | |
92 return args | |
93 | |
94 ########################### warning ########################################### | |
95 def warning(s :str) -> None: | |
96 """ | |
97 Log a warning message to an output log file and print it to the console. | |
98 | |
99 Args: | |
100 s (str): The warning message to be logged and printed. | |
101 | |
102 Returns: | |
103 None | |
104 """ | |
105 args = process_args(sys.argv) | |
106 with open(args.out_log, 'a') as log: | |
107 log.write(s + "\n\n") | |
108 print(s) | |
109 | |
110 ########################## read dataset ###################################### | |
111 def read_dataset(dataset :str) -> pd.DataFrame: | |
112 """ | |
113 Read dataset from a CSV file and return it as a Pandas DataFrame. | |
114 | |
115 Args: | |
116 dataset (str): the path to the dataset to convert into a DataFrame | |
117 | |
118 Returns: | |
119 pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | |
120 | |
121 Raises: | |
122 pandas.errors.EmptyDataError: If the dataset file is empty. | |
123 sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | |
124 """ | |
125 try: | |
126 dataset = pd.read_csv(dataset, sep = '\t', header = 0) | |
127 except pd.errors.EmptyDataError: | |
128 sys.exit('Execution aborted: wrong format of dataset\n') | |
129 if len(dataset.columns) < 2: | |
130 sys.exit('Execution aborted: wrong format of dataset\n') | |
131 return dataset | |
132 | |
133 ############################ rewrite_input ################################### | |
134 def rewrite_input(dataset :pd.DataFrame) -> Dict[str, List[Optional[float]]]: | |
135 """ | |
136 Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | |
137 | |
138 Args: | |
139 dataset (pandas.DataFrame): The dataset to be rewritten. | |
140 | |
141 Returns: | |
142 dict: The rewritten dataset as a dictionary of lists. | |
143 """ | |
144 #Riscrivo il dataset come dizionario di liste, | |
145 #non come dizionario di dizionari | |
146 | |
147 dataset.pop('Reactions', None) | |
148 | |
149 for key, val in dataset.items(): | |
150 l = [] | |
151 for i in val: | |
152 if i == 'None': | |
153 l.append(None) | |
154 else: | |
155 l.append(float(i)) | |
156 | |
157 dataset[key] = l | |
158 | |
159 return dataset | |
160 | |
161 ############################## write to csv ################################## | |
162 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | |
163 """ | |
164 Write dataset and predicted labels to a CSV file. | |
165 | |
166 Args: | |
167 dataset (pandas.DataFrame): The dataset to be written. | |
168 labels (list): The predicted labels for each data point. | |
169 name (str): The name of the output CSV file. | |
170 | |
171 Returns: | |
172 None | |
173 """ | |
174 #labels = predict | |
175 predict = [x+1 for x in labels] | |
176 | |
177 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
178 | |
179 dest = name | |
180 classe.to_csv(dest, sep = '\t', index = False, | |
181 header = ['Patient_ID', 'Class']) | |
182 | |
183 ########################### trova il massimo in lista ######################## | |
184 def max_index (lista :List[int]) -> int: | |
185 """ | |
186 Find the index of the maximum value in a list. | |
187 | |
188 Args: | |
189 lista (list): The list in which we search for the index of the maximum value. | |
190 | |
191 Returns: | |
192 int: The index of the maximum value in the list. | |
193 """ | |
194 best = -1 | |
195 best_index = 0 | |
196 for i in range(len(lista)): | |
197 if lista[i] > best: | |
198 best = lista [i] | |
199 best_index = i | |
200 | |
201 return best_index | |
202 | |
203 ################################ kmeans ##################################### | |
204 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | |
205 """ | |
206 Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | |
207 The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | |
208 | |
209 Args: | |
210 k_min (int): The minimum number of clusters to consider. | |
211 k_max (int): The maximum number of clusters to consider. | |
212 dataset (pandas.DataFrame): The dataset to perform clustering on. | |
213 elbow (str): Whether to generate an elbow plot for kmeans ('true' or 'false'). | |
214 silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | |
215 best_cluster (str): The file path to save the output of the best cluster. | |
216 | |
217 Returns: | |
218 None | |
219 """ | |
220 if not os.path.exists('clustering'): | |
221 os.makedirs('clustering') | |
222 | |
223 | |
224 if elbow == 'true': | |
225 elbow = True | |
226 else: | |
227 elbow = False | |
228 | |
229 if silhouette == 'true': | |
230 silhouette = True | |
231 else: | |
232 silhouette = False | |
233 | |
234 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
235 distortions = [] | |
236 scores = [] | |
237 all_labels = [] | |
238 | |
239 clusterer = KMeans(n_clusters=1, random_state=10) | |
240 distortions.append(clusterer.fit(dataset).inertia_) | |
241 | |
242 | |
243 for n_clusters in range_n_clusters: | |
244 clusterer = KMeans(n_clusters=n_clusters, random_state=10) | |
245 cluster_labels = clusterer.fit_predict(dataset) | |
246 | |
247 all_labels.append(cluster_labels) | |
248 if n_clusters == 1: | |
249 silhouette_avg = 0 | |
250 else: | |
251 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
252 scores.append(silhouette_avg) | |
253 distortions.append(clusterer.fit(dataset).inertia_) | |
254 | |
255 best = max_index(scores) + k_min | |
256 | |
257 for i in range(len(all_labels)): | |
258 prefix = '' | |
259 if (i + k_min == best): | |
260 prefix = '_BEST' | |
261 | |
262 write_to_csv(dataset, all_labels[i], 'clustering/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | |
263 | |
264 | |
265 if (prefix == '_BEST'): | |
266 labels = all_labels[i] | |
267 predict = [x+1 for x in labels] | |
268 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
269 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
270 | |
271 | |
272 | |
273 | |
274 if silhouette: | |
275 silhouette_draw(dataset, all_labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
276 | |
277 | |
278 if elbow: | |
279 elbow_plot(distortions, k_min,k_max) | |
280 | |
281 | |
282 | |
283 | |
284 | |
285 ############################## elbow_plot #################################### | |
286 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | |
287 """ | |
288 Generate an elbow plot to visualize the distortion for different numbers of clusters. | |
289 The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | |
290 in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | |
291 | |
292 Args: | |
293 distortions (list): List of distortion values for different numbers of clusters. | |
294 k_min (int): The minimum number of clusters considered. | |
295 k_max (int): The maximum number of clusters considered. | |
296 | |
297 Returns: | |
298 None | |
299 """ | |
300 plt.figure(0) | |
301 x = list(range(k_min, k_max + 1)) | |
302 x.insert(0, 1) | |
303 plt.plot(x, distortions, marker = 'o') | |
304 plt.xlabel('Number of clusters (k)') | |
305 plt.ylabel('Distortion') | |
306 s = 'clustering/elbow_plot.png' | |
307 fig = plt.gcf() | |
308 fig.set_size_inches(18.5, 10.5, forward = True) | |
309 fig.savefig(s, dpi=100) | |
310 | |
311 | |
312 ############################## silhouette plot ############################### | |
313 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | |
314 """ | |
315 Generate a silhouette plot for the clustering results. | |
316 The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | |
317 The silhouette coefficient ranges from -1 to 1, where: | |
318 - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | |
319 - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | |
320 - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | |
321 | |
322 Args: | |
323 dataset (pandas.DataFrame): The dataset used for clustering. | |
324 labels (list): The cluster labels assigned to each data point. | |
325 n_clusters (int): The number of clusters. | |
326 path (str): The path to save the silhouette plot image. | |
327 | |
328 Returns: | |
329 None | |
330 """ | |
331 if n_clusters == 1: | |
332 return None | |
333 | |
334 silhouette_avg = silhouette_score(dataset, labels) | |
335 warning("For n_clusters = " + str(n_clusters) + | |
336 " The average silhouette_score is: " + str(silhouette_avg)) | |
337 | |
338 plt.close('all') | |
339 # Create a subplot with 1 row and 2 columns | |
340 fig, (ax1) = plt.subplots(1, 1) | |
341 | |
342 fig.set_size_inches(18, 7) | |
343 | |
344 # The 1st subplot is the silhouette plot | |
345 # The silhouette coefficient can range from -1, 1 but in this example all | |
346 # lie within [-0.1, 1] | |
347 ax1.set_xlim([-1, 1]) | |
348 # The (n_clusters+1)*10 is for inserting blank space between silhouette | |
349 # plots of individual clusters, to demarcate them clearly. | |
350 ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | |
351 | |
352 # Compute the silhouette scores for each sample | |
353 sample_silhouette_values = silhouette_samples(dataset, labels) | |
354 | |
355 y_lower = 10 | |
356 for i in range(n_clusters): | |
357 # Aggregate the silhouette scores for samples belonging to | |
358 # cluster i, and sort them | |
359 ith_cluster_silhouette_values = \ | |
360 sample_silhouette_values[labels == i] | |
361 | |
362 ith_cluster_silhouette_values.sort() | |
363 | |
364 size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
365 y_upper = y_lower + size_cluster_i | |
366 | |
367 color = cm.nipy_spectral(float(i) / n_clusters) | |
368 ax1.fill_betweenx(np.arange(y_lower, y_upper), | |
369 0, ith_cluster_silhouette_values, | |
370 facecolor=color, edgecolor=color, alpha=0.7) | |
371 | |
372 # Label the silhouette plots with their cluster numbers at the middle | |
373 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | |
374 | |
375 # Compute the new y_lower for next plot | |
376 y_lower = y_upper + 10 # 10 for the 0 samples | |
377 | |
378 ax1.set_title("The silhouette plot for the various clusters.") | |
379 ax1.set_xlabel("The silhouette coefficient values") | |
380 ax1.set_ylabel("Cluster label") | |
381 | |
382 # The vertical line for average silhouette score of all the values | |
383 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | |
384 | |
385 ax1.set_yticks([]) # Clear the yaxis labels / ticks | |
386 ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | |
387 | |
388 | |
389 plt.suptitle(("Silhouette analysis for clustering on sample data " | |
390 "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | |
391 | |
392 | |
393 plt.savefig(path, bbox_inches='tight') | |
394 | |
395 ######################## dbscan ############################################## | |
396 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | |
397 """ | |
398 Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | |
399 | |
400 Args: | |
401 dataset (pandas.DataFrame): The dataset to be clustered. | |
402 eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | |
403 min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | |
404 best_cluster (str): The file path to save the output of the best cluster. | |
405 | |
406 Returns: | |
407 None | |
408 """ | |
409 if not os.path.exists('clustering'): | |
410 os.makedirs('clustering') | |
411 | |
412 if eps is not None: | |
413 clusterer = DBSCAN(eps = eps, min_samples = min_samples) | |
414 else: | |
415 clusterer = DBSCAN() | |
416 | |
417 clustering = clusterer.fit(dataset) | |
418 | |
419 core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | |
420 core_samples_mask[clustering.core_sample_indices_] = True | |
421 labels = clustering.labels_ | |
422 | |
423 # Number of clusters in labels, ignoring noise if present. | |
424 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
425 | |
426 | |
427 labels = labels | |
428 predict = [x+1 for x in labels] | |
429 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
430 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
431 | |
432 | |
433 ########################## hierachical ####################################### | |
434 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | |
435 """ | |
436 Perform hierarchical agglomerative clustering on the given dataset. | |
437 | |
438 Args: | |
439 dataset (pandas.DataFrame): The dataset to be clustered. | |
440 k_min (int): The minimum number of clusters to consider. | |
441 k_max (int): The maximum number of clusters to consider. | |
442 best_cluster (str): The file path to save the output of the best cluster. | |
443 silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | |
444 | |
445 Returns: | |
446 None | |
447 """ | |
448 if not os.path.exists('clustering'): | |
449 os.makedirs('clustering') | |
450 | |
451 plt.figure(figsize=(10, 7)) | |
452 plt.title("Customer Dendograms") | |
453 shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | |
454 fig = plt.gcf() | |
455 fig.savefig('clustering/dendogram.png', dpi=200) | |
456 | |
457 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
458 | |
459 scores = [] | |
460 labels = [] | |
461 | |
462 n_classi = dataset.shape[0] | |
463 | |
464 for n_clusters in range_n_clusters: | |
465 cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | |
466 cluster.fit_predict(dataset) | |
467 cluster_labels = cluster.labels_ | |
468 labels.append(cluster_labels) | |
469 write_to_csv(dataset, cluster_labels, 'clustering/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | |
470 | |
471 best = max_index(scores) + k_min | |
472 | |
473 for i in range(len(labels)): | |
474 prefix = '' | |
475 if (i + k_min == best): | |
476 prefix = '_BEST' | |
477 if silhouette == 'true': | |
478 silhouette_draw(dataset, labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
479 | |
480 for i in range(len(labels)): | |
481 if (i + k_min == best): | |
482 labels = labels[i] | |
483 predict = [x+1 for x in labels] | |
484 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
485 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
486 | |
487 | |
488 ############################# main ########################################### | |
489 def main() -> None: | |
490 """ | |
491 Initializes everything and sets the program in motion based on the fronted input arguments. | |
492 | |
493 Returns: | |
494 None | |
495 """ | |
496 if not os.path.exists('clustering'): | |
497 os.makedirs('clustering') | |
498 | |
499 args = process_args(sys.argv) | |
500 | |
501 #Data read | |
502 | |
503 X = read_dataset(args.input) | |
504 X = pd.DataFrame.to_dict(X, orient='list') | |
505 X = rewrite_input(X) | |
506 X = pd.DataFrame.from_dict(X, orient = 'index') | |
507 | |
508 for i in X.columns: | |
509 tmp = X[i][0] | |
510 if tmp == None: | |
511 X = X.drop(columns=[i]) | |
512 | |
513 ## NAN TO HANLDE | |
514 | |
515 if args.k_max != None: | |
516 numero_classi = X.shape[0] | |
517 while args.k_max >= numero_classi: | |
518 err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | |
519 warning(err) | |
520 args.k_max = args.k_max - 1 | |
521 | |
522 | |
523 if args.cluster_type == 'kmeans': | |
524 kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | |
525 | |
526 if args.cluster_type == 'dbscan': | |
527 dbscan(X, args.eps, args.min_samples, args.best_cluster) | |
528 | |
529 if args.cluster_type == 'hierarchy': | |
530 hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | |
531 | |
532 ############################################################################## | |
533 if __name__ == "__main__": | |
534 main() |