Mercurial > repos > bimib > cobraxy
comparison COBRAxy/ras_to_bounds.py @ 93:7e703e546998 draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 11:41:34 +0000 |
parents | |
children | e844f7dab6fe |
comparison
equal
deleted
inserted
replaced
92:fdf713bb5772 | 93:7e703e546998 |
---|---|
1 import argparse | |
2 import utils.general_utils as utils | |
3 from typing import Optional, List | |
4 import os | |
5 import numpy as np | |
6 import pandas as pd | |
7 import cobra | |
8 import sys | |
9 import csv | |
10 from joblib import Parallel, delayed, cpu_count | |
11 | |
12 ################################# process args ############################### | |
13 def process_args(args :List[str]) -> argparse.Namespace: | |
14 """ | |
15 Processes command-line arguments. | |
16 | |
17 Args: | |
18 args (list): List of command-line arguments. | |
19 | |
20 Returns: | |
21 Namespace: An object containing parsed arguments. | |
22 """ | |
23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
24 description = 'process some value\'s') | |
25 | |
26 parser.add_argument( | |
27 '-ms', '--model_selector', | |
28 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
29 help = 'chose which type of model you want use') | |
30 | |
31 parser.add_argument("-mo", "--model", type = str, | |
32 help = "path to input file with custom rules, if provided") | |
33 | |
34 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
35 | |
36 parser.add_argument( | |
37 '-mes', '--medium_selector', | |
38 default = "allOpen", | |
39 help = 'chose which type of medium you want use') | |
40 | |
41 parser.add_argument("-meo", "--medium", type = str, | |
42 help = "path to input file with custom medium, if provided") | |
43 | |
44 parser.add_argument('-ol', '--out_log', | |
45 help = "Output log") | |
46 | |
47 parser.add_argument('-td', '--tool_dir', | |
48 type = str, | |
49 required = True, | |
50 help = 'your tool directory') | |
51 | |
52 parser.add_argument('-ir', '--input_ras', | |
53 type=str, | |
54 required = False, | |
55 help = 'input ras') | |
56 | |
57 parser.add_argument('-rs', '--ras_selector', | |
58 required = True, | |
59 type=utils.Bool("using_RAS"), | |
60 help = 'ras selector') | |
61 | |
62 parser.add_argument('-c', '--classes', | |
63 type = str, | |
64 required = False, | |
65 help = 'input classes') | |
66 | |
67 parser.add_argument('-cc', '--cell_class', | |
68 type = str, | |
69 help = 'output of cell class') | |
70 | |
71 ARGS = parser.parse_args() | |
72 return ARGS | |
73 | |
74 ########################### warning ########################################### | |
75 def warning(s :str) -> None: | |
76 """ | |
77 Log a warning message to an output log file and print it to the console. | |
78 | |
79 Args: | |
80 s (str): The warning message to be logged and printed. | |
81 | |
82 Returns: | |
83 None | |
84 """ | |
85 with open(ARGS.out_log, 'a') as log: | |
86 log.write(s + "\n\n") | |
87 print(s) | |
88 | |
89 ############################ dataset input #################################### | |
90 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
91 """ | |
92 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
93 | |
94 Args: | |
95 data (str): Path to the CSV file containing the dataset. | |
96 name (str): Name of the dataset, used in error messages. | |
97 | |
98 Returns: | |
99 pandas.DataFrame: DataFrame containing the dataset. | |
100 | |
101 Raises: | |
102 pd.errors.EmptyDataError: If the CSV file is empty. | |
103 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
104 """ | |
105 try: | |
106 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
107 except pd.errors.EmptyDataError: | |
108 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
109 if len(dataset.columns) < 2: | |
110 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
111 return dataset | |
112 | |
113 | |
114 def apply_ras_bounds(model, ras_row, rxns_ids): | |
115 """ | |
116 Adjust the bounds of reactions in the model based on RAS values. | |
117 | |
118 Args: | |
119 model (cobra.Model): The metabolic model to be modified. | |
120 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
121 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
122 | |
123 Returns: | |
124 None | |
125 """ | |
126 for reaction in rxns_ids: | |
127 if reaction in ras_row.index: | |
128 scaling_factor = ras_row[reaction] | |
129 lower_bound=model.reactions.get_by_id(reaction).lower_bound | |
130 upper_bound=model.reactions.get_by_id(reaction).upper_bound | |
131 valMax=float((upper_bound)*scaling_factor) | |
132 valMin=float((lower_bound)*scaling_factor) | |
133 if upper_bound!=0 and lower_bound==0: | |
134 model.reactions.get_by_id(reaction).upper_bound=valMax | |
135 if upper_bound==0 and lower_bound!=0: | |
136 model.reactions.get_by_id(reaction).lower_bound=valMin | |
137 if upper_bound!=0 and lower_bound!=0: | |
138 model.reactions.get_by_id(reaction).lower_bound=valMin | |
139 model.reactions.get_by_id(reaction).upper_bound=valMax | |
140 pass | |
141 | |
142 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): | |
143 """ | |
144 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
145 | |
146 Args: | |
147 cellName (str): The name of the RAS cell (used for naming the output file). | |
148 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
149 model (cobra.Model): The metabolic model to be modified. | |
150 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
151 output_folder (str): Folder path where the output CSV file will be saved. | |
152 | |
153 Returns: | |
154 None | |
155 """ | |
156 model_new = model.copy() | |
157 apply_ras_bounds(model_new, ras_row, rxns_ids) | |
158 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
159 bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
160 pass | |
161 | |
162 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | |
163 """ | |
164 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
165 | |
166 Args: | |
167 model (cobra.Model): The metabolic model for which bounds will be generated. | |
168 medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | |
169 ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | |
170 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
171 | |
172 Returns: | |
173 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
174 """ | |
175 rxns_ids = [rxn.id for rxn in model.reactions] | |
176 | |
177 # Set medium conditions | |
178 for reaction, value in medium.items(): | |
179 if value is not None: | |
180 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
181 | |
182 # Perform Flux Variability Analysis (FVA) | |
183 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
184 | |
185 # Set FVA bounds | |
186 for reaction in rxns_ids: | |
187 rxn = model.reactions.get_by_id(reaction) | |
188 rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
189 rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
190 | |
191 if ras is not None: | |
192 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | |
193 else: | |
194 model_new = model.copy() | |
195 apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) | |
196 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
197 bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | |
198 pass | |
199 | |
200 | |
201 | |
202 ############################# main ########################################### | |
203 def main() -> None: | |
204 """ | |
205 Initializes everything and sets the program in motion based on the fronted input arguments. | |
206 | |
207 Returns: | |
208 None | |
209 """ | |
210 if not os.path.exists('ras_to_bounds'): | |
211 os.makedirs('ras_to_bounds') | |
212 | |
213 | |
214 global ARGS | |
215 ARGS = process_args(sys.argv) | |
216 | |
217 ARGS.output_folder = 'ras_to_bounds/' | |
218 | |
219 if(ARGS.ras_selector == True): | |
220 ras_file_list = ARGS.input_ras.split(",") | |
221 if(len(ras_file_list)>1): | |
222 ras_class_names = [cls.strip() for cls in ARGS.classes.split(',')] | |
223 else: | |
224 ras_class_names = ["placeHolder"] | |
225 ras_list = [] | |
226 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | |
227 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | |
228 ras = read_dataset(ras_matrix, "ras dataset") | |
229 ras.replace("None", None, inplace=True) | |
230 ras.set_index("Reactions", drop=True, inplace=True) | |
231 ras = ras.T | |
232 ras = ras.astype(float) | |
233 ras_list.append(ras) | |
234 for patient_id in ras.index: | |
235 class_assignments = class_assignments.append({"Patient_ID": patient_id, "Class": ras_class_name}, ignore_index=True) | |
236 | |
237 # Concatenate all ras DataFrames into a single DataFrame | |
238 ras_combined = pd.concat(ras_list, axis=1) | |
239 # Normalize the RAS values by max RAS | |
240 ras_combined = ras_combined.div(ras_combined.max(axis=0)) | |
241 ras_combined = ras_combined.fillna(0) | |
242 | |
243 | |
244 | |
245 model_type :utils.Model = ARGS.model_selector | |
246 if model_type is utils.Model.Custom: | |
247 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
248 else: | |
249 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
250 | |
251 if(ARGS.medium_selector == "Custom"): | |
252 medium = read_dataset(ARGS.medium, "medium dataset") | |
253 medium.set_index(medium.columns[0], inplace=True) | |
254 medium = medium.astype(float) | |
255 medium = medium[medium.columns[0]].to_dict() | |
256 else: | |
257 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
258 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
259 medium = df_mediums[[ARGS.medium_selector]] | |
260 medium = medium[ARGS.medium_selector].to_dict() | |
261 | |
262 if(ARGS.ras_selector == True): | |
263 generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) | |
264 if(len(ras_list)>1): | |
265 class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | |
266 else: | |
267 generate_bounds(model, medium, output_folder=ARGS.output_folder) | |
268 | |
269 pass | |
270 | |
271 ############################################################################## | |
272 if __name__ == "__main__": | |
273 main() |