Mercurial > repos > bimib > cobraxy
comparison flux_to_map.py @ 150:834009d1a094 draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 06 Nov 2024 21:00:17 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
149:8f47c038cc28 | 150:834009d1a094 |
---|---|
1 from __future__ import division | |
2 import csv | |
3 from enum import Enum | |
4 import re | |
5 import sys | |
6 import numpy as np | |
7 import pandas as pd | |
8 import itertools as it | |
9 import scipy.stats as st | |
10 import lxml.etree as ET | |
11 import math | |
12 import utils.general_utils as utils | |
13 from PIL import Image | |
14 import os | |
15 import copy | |
16 import argparse | |
17 import pyvips | |
18 from PIL import Image, ImageDraw, ImageFont | |
19 from typing import Tuple, Union, Optional, List, Dict | |
20 import matplotlib.pyplot as plt | |
21 | |
22 ERRORS = [] | |
23 ########################## argparse ########################################## | |
24 ARGS :argparse.Namespace | |
25 def process_args(args:List[str] = None) -> argparse.Namespace: | |
26 """ | |
27 Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | |
28 | |
29 Args: | |
30 args : Always obtained (in file) from sys.argv | |
31 | |
32 Returns: | |
33 Namespace : An object containing the parsed arguments | |
34 """ | |
35 parser = argparse.ArgumentParser( | |
36 usage = "%(prog)s [options]", | |
37 description = "process some value's genes to create a comparison's map.") | |
38 | |
39 #General: | |
40 parser.add_argument( | |
41 '-td', '--tool_dir', | |
42 type = str, | |
43 required = True, | |
44 help = 'your tool directory') | |
45 | |
46 parser.add_argument('-on', '--control', type = str) | |
47 parser.add_argument('-ol', '--out_log', help = "Output log") | |
48 | |
49 #Computation details: | |
50 parser.add_argument( | |
51 '-co', '--comparison', | |
52 type = str, | |
53 default = '1vs1', | |
54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
55 | |
56 parser.add_argument( | |
57 '-pv' ,'--pValue', | |
58 type = float, | |
59 default = 0.1, | |
60 help = 'P-Value threshold (default: %(default)s)') | |
61 | |
62 parser.add_argument( | |
63 '-fc', '--fChange', | |
64 type = float, | |
65 default = 1.5, | |
66 help = 'Fold-Change threshold (default: %(default)s)') | |
67 | |
68 | |
69 parser.add_argument( | |
70 '-op', '--option', | |
71 type = str, | |
72 choices = ['datasets', 'dataset_class'], | |
73 help='dataset or dataset and class') | |
74 | |
75 parser.add_argument( | |
76 '-idf', '--input_data_fluxes', | |
77 type = str, | |
78 help = 'input dataset fluxes') | |
79 | |
80 parser.add_argument( | |
81 '-icf', '--input_class_fluxes', | |
82 type = str, | |
83 help = 'sample group specification fluxes') | |
84 | |
85 parser.add_argument( | |
86 '-idsf', '--input_datas_fluxes', | |
87 type = str, | |
88 nargs = '+', | |
89 help = 'input datasets fluxes') | |
90 | |
91 parser.add_argument( | |
92 '-naf', '--names_fluxes', | |
93 type = str, | |
94 nargs = '+', | |
95 help = 'input names fluxes') | |
96 | |
97 #Output: | |
98 parser.add_argument( | |
99 "-gs", "--generate_svg", | |
100 type = utils.Bool("generate_svg"), default = True, | |
101 help = "choose whether to generate svg") | |
102 | |
103 parser.add_argument( | |
104 "-gp", "--generate_pdf", | |
105 type = utils.Bool("generate_pdf"), default = True, | |
106 help = "choose whether to generate pdf") | |
107 | |
108 parser.add_argument( | |
109 '-cm', '--custom_map', | |
110 type = str, | |
111 help='custom map to use') | |
112 | |
113 parser.add_argument( | |
114 '-mc', '--choice_map', | |
115 type = utils.Model, default = utils.Model.HMRcore, | |
116 choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | |
117 | |
118 parser.add_argument( | |
119 '-colorm', '--color_map', | |
120 type = str, | |
121 choices = ["jet", "viridis"]) | |
122 | |
123 parser.add_argument( | |
124 '-idop', '--output_path', | |
125 type = str, | |
126 default='result', | |
127 help = 'output path for maps') | |
128 | |
129 args :argparse.Namespace = parser.parse_args(args) | |
130 args.net = True | |
131 | |
132 return args | |
133 | |
134 ############################ dataset input #################################### | |
135 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
136 """ | |
137 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | |
138 | |
139 Args: | |
140 data : filepath of a dataset (from frontend input params or literals upon calling) | |
141 name : name associated with the dataset (from frontend input params or literals upon calling) | |
142 | |
143 Returns: | |
144 pd.DataFrame : dataset in a runtime operable shape | |
145 | |
146 Raises: | |
147 sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | |
148 """ | |
149 try: | |
150 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
151 except pd.errors.EmptyDataError: | |
152 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
153 if len(dataset.columns) < 2: | |
154 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
155 return dataset | |
156 | |
157 ############################ dataset name ##################################### | |
158 def name_dataset(name_data :str, count :int) -> str: | |
159 """ | |
160 Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | |
161 | |
162 Args: | |
163 name_data : name associated with the dataset (from frontend input params) | |
164 count : counter from 1 to make these names unique (external) | |
165 | |
166 Returns: | |
167 str : the name made unique | |
168 """ | |
169 if str(name_data) == 'Dataset': | |
170 return str(name_data) + '_' + str(count) | |
171 else: | |
172 return str(name_data) | |
173 | |
174 ############################ map_methods ###################################### | |
175 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | |
176 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | |
177 """ | |
178 Calculates the fold change between two gene expression values. | |
179 | |
180 Args: | |
181 avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | |
182 | |
183 Returns: | |
184 FoldChange : | |
185 0 : when both input values are 0 | |
186 "-INF" : when avg1 is 0 | |
187 "INF" : when avg2 is 0 | |
188 float : for any other combination of values | |
189 """ | |
190 if avg1 == 0 and avg2 == 0: | |
191 return 0 | |
192 elif avg1 == 0: | |
193 return '-INF' | |
194 elif avg2 == 0: | |
195 return 'INF' | |
196 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | |
197 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | |
198 | |
199 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
200 """ | |
201 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
202 | |
203 Args: | |
204 l : current style string of an SVG element | |
205 col : new value for the "stroke" style property | |
206 width : new value for the "stroke-width" style property | |
207 dash : new value for the "stroke-dasharray" style property | |
208 | |
209 Returns: | |
210 str : the fixed style string | |
211 """ | |
212 tmp = l.split(';') | |
213 flag_col = False | |
214 flag_width = False | |
215 flag_dash = False | |
216 for i in range(len(tmp)): | |
217 if tmp[i].startswith('stroke:'): | |
218 tmp[i] = 'stroke:' + col | |
219 flag_col = True | |
220 if tmp[i].startswith('stroke-width:'): | |
221 tmp[i] = 'stroke-width:' + width | |
222 flag_width = True | |
223 if tmp[i].startswith('stroke-dasharray:'): | |
224 tmp[i] = 'stroke-dasharray:' + dash | |
225 flag_dash = True | |
226 if not flag_col: | |
227 tmp.append('stroke:' + col) | |
228 if not flag_width: | |
229 tmp.append('stroke-width:' + width) | |
230 if not flag_dash: | |
231 tmp.append('stroke-dasharray:' + dash) | |
232 return ';'.join(tmp) | |
233 | |
234 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | |
235 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
236 """ | |
237 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
238 | |
239 Args: | |
240 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
241 core_map : SVG map to modify | |
242 threshold_P_V : threshold for a p-value to be considered significant | |
243 threshold_F_C : threshold for a fold change value to be considered significant | |
244 max_z_score : highest z-score (absolute value) | |
245 | |
246 Returns: | |
247 ET.ElementTree : the modified core_map | |
248 | |
249 Side effects: | |
250 core_map : mut | |
251 """ | |
252 maxT = 12 | |
253 minT = 2 | |
254 grey = '#BEBEBE' | |
255 blue = '#6495ed' | |
256 red = '#ecac68' | |
257 for el in core_map.iter(): | |
258 el_id = str(el.get('id')) | |
259 if el_id.startswith('R_'): | |
260 tmp = d.get(el_id[2:]) | |
261 if tmp != None: | |
262 p_val :float = tmp[0] | |
263 f_c = tmp[1] | |
264 z_score = tmp[2] | |
265 if p_val < threshold_P_V: | |
266 if not isinstance(f_c, str): | |
267 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | |
268 col = grey | |
269 width = str(minT) | |
270 else: | |
271 if f_c < 0: | |
272 col = blue | |
273 elif f_c > 0: | |
274 col = red | |
275 width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | |
276 else: | |
277 if f_c == '-INF': | |
278 col = blue | |
279 elif f_c == 'INF': | |
280 col = red | |
281 width = str(maxT) | |
282 dash = 'none' | |
283 else: | |
284 dash = '5,5' | |
285 col = grey | |
286 width = str(minT) | |
287 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
288 return core_map | |
289 | |
290 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | |
291 """ | |
292 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | |
293 not enforced, if more than one element with the exact ID is found only the first will be returned. | |
294 | |
295 Args: | |
296 reactionId (str): exact ID of the requested element. | |
297 metabMap (ET.ElementTree): metabolic map containing the element. | |
298 | |
299 Returns: | |
300 utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | |
301 """ | |
302 return utils.Result.Ok( | |
303 f"//*[@id=\"{reactionId}\"]").map( | |
304 lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | |
305 lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | |
306 # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | |
307 | |
308 def styleMapElement(element :ET.Element, styleStr :str) -> None: | |
309 currentStyles :str = element.get("style", "") | |
310 if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | |
311 currentStyles = ';'.join(currentStyles.split(';')[:-3]) | |
312 | |
313 element.set("style", currentStyles + styleStr) | |
314 | |
315 class ReactionDirection(Enum): | |
316 Unknown = "" | |
317 Direct = "_F" | |
318 Inverse = "_B" | |
319 | |
320 @classmethod | |
321 def fromDir(cls, s :str) -> "ReactionDirection": | |
322 # vvv as long as there's so few variants I actually condone the if spam: | |
323 if s == ReactionDirection.Direct.value: return ReactionDirection.Direct | |
324 if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | |
325 return ReactionDirection.Unknown | |
326 | |
327 @classmethod | |
328 def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | |
329 return ReactionDirection.fromDir(reactionId[-2:]) | |
330 | |
331 def getArrowBodyElementId(reactionId :str) -> str: | |
332 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
333 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | |
334 return f"R_{reactionId}" | |
335 | |
336 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | |
337 """ | |
338 We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | |
339 | |
340 Args: | |
341 reactionId : the provided reaction ID. | |
342 | |
343 Returns: | |
344 Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | |
345 """ | |
346 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
347 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | |
348 return f"F_{reactionId}", f"B_{reactionId}" | |
349 | |
350 class ArrowColor(Enum): | |
351 """ | |
352 Encodes possible arrow colors based on their meaning in the enrichment process. | |
353 """ | |
354 Invalid = "#BEBEBE" # gray, fold-change under treshold | |
355 Transparent = "#ffffff00" # white, not significant p-value | |
356 UpRegulated = "#ecac68" # red, up-regulated reaction | |
357 DownRegulated = "#6495ed" # blue, down-regulated reaction | |
358 | |
359 UpRegulatedInv = "#FF0000" | |
360 # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | |
361 # conflicting enrichment in the two directions. | |
362 | |
363 DownRegulatedInv = "#0000FF" | |
364 # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | |
365 # conflicting enrichment in the two directions. | |
366 | |
367 @classmethod | |
368 def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | |
369 colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | |
370 return colors[useAltColor] | |
371 | |
372 def __str__(self) -> str: return self.value | |
373 | |
374 class Arrow: | |
375 """ | |
376 Models the properties of a reaction arrow that change based on enrichment. | |
377 """ | |
378 MIN_W = 2 | |
379 MAX_W = 12 | |
380 | |
381 def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | |
382 """ | |
383 (Private) Initializes an instance of Arrow. | |
384 | |
385 Args: | |
386 width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | |
387 col : color of the arrow. | |
388 isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | |
389 | |
390 Returns: | |
391 None : practically, a Arrow instance. | |
392 """ | |
393 self.w = width | |
394 self.col = col | |
395 self.dash = isDashed | |
396 | |
397 def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | |
398 if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | |
399 ERRORS.append(reactionId) | |
400 | |
401 def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | |
402 if not mindReactionDir: | |
403 return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
404 | |
405 # Now we style the arrow head(s): | |
406 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
407 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
408 if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
409 | |
410 def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: | |
411 | |
412 self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
413 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
414 | |
415 if(isNegative): | |
416 self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
417 self.col = ArrowColor.Transparent | |
418 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | |
419 else: | |
420 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
421 self.col = ArrowColor.Transparent | |
422 self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | |
423 | |
424 | |
425 | |
426 def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | |
427 """ | |
428 Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | |
429 | |
430 Args: | |
431 reactionId: the reaction ID, as encoded in the dataset. | |
432 mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | |
433 | |
434 Returns: | |
435 str : the ID of an arrow's body or tips in the map. | |
436 """ | |
437 # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | |
438 if not mindReactionDir: return "R_" + reactionId | |
439 | |
440 #TODO: this is clearly something we need to make consistent in fluxes | |
441 return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | |
442 | |
443 def toStyleStr(self, *, downSizedForTips = False) -> str: | |
444 """ | |
445 Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | |
446 | |
447 Returns: | |
448 str : the styles string. | |
449 """ | |
450 width = self.w | |
451 if downSizedForTips: width *= 0.8 | |
452 return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | |
453 | |
454 # vvv These constants could be inside the class itself a static properties, but python | |
455 # was built by brainless organisms so here we are! | |
456 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | |
457 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | |
458 | |
459 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | |
460 """ | |
461 Applies fluxes enrichment results to the provided metabolic map. | |
462 | |
463 Args: | |
464 fluxesEnrichmentRes : fluxes enrichment results. | |
465 metabMap : the metabolic map to edit. | |
466 maxNumericZScore : biggest finite z-score value found. | |
467 | |
468 Side effects: | |
469 metabMap : mut | |
470 | |
471 Returns: | |
472 None | |
473 """ | |
474 for reactionId, values in fluxesEnrichmentRes.items(): | |
475 pValue = values[0] | |
476 foldChange = values[1] | |
477 z_score = values[2] | |
478 | |
479 if isinstance(foldChange, str): foldChange = float(foldChange) | |
480 if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | |
481 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | |
482 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
483 | |
484 continue | |
485 | |
486 if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | |
487 INVALID_ARROW.styleReactionElements(metabMap, reactionId) | |
488 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
489 | |
490 continue | |
491 | |
492 width = Arrow.MAX_W | |
493 if not math.isinf(foldChange): | |
494 try: | |
495 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | |
496 | |
497 except ZeroDivisionError: pass | |
498 | |
499 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | |
500 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | |
501 # continue | |
502 | |
503 #reactionId = reactionId[:-3] # Remove "_RV" | |
504 | |
505 inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | |
506 if inversionScore == 2: foldChange *= -1 | |
507 # ^^^ Style the inverse direction with the opposite sign netValue | |
508 | |
509 # If the score is 1 (opposite signs) we use alternative colors vvv | |
510 arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | |
511 | |
512 # vvv These 2 if statements can both be true and can both happen | |
513 if ARGS.net: # style arrow head(s): | |
514 arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | |
515 arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") | |
516 | |
517 arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
518 | |
519 | |
520 ############################ split class ###################################### | |
521 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | |
522 """ | |
523 Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | |
524 | |
525 Args: | |
526 classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | |
527 resolve_rules : a :dict containing :float data | |
528 | |
529 Returns: | |
530 dict : the dict with data grouped by class | |
531 | |
532 Side effects: | |
533 classes : mut | |
534 """ | |
535 class_pat :Dict[str, List[List[float]]] = {} | |
536 for i in range(len(classes)): | |
537 classe :str = classes.iloc[i, 1] | |
538 if pd.isnull(classe): continue | |
539 | |
540 l :List[List[float]] = [] | |
541 for j in range(i, len(classes)): | |
542 if classes.iloc[j, 1] == classe: | |
543 pat_id :str = classes.iloc[j, 0] | |
544 tmp = resolve_rules.get(pat_id, None) | |
545 if tmp != None: | |
546 l.append(tmp) | |
547 classes.iloc[j, 1] = None | |
548 | |
549 if l: | |
550 class_pat[classe] = list(map(list, zip(*l))) | |
551 continue | |
552 | |
553 utils.logWarning( | |
554 f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | |
555 | |
556 return class_pat | |
557 | |
558 ############################ conversion ############################################## | |
559 #conversion from svg to png | |
560 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | |
561 """ | |
562 Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | |
563 | |
564 Args: | |
565 svg_path : path to SVG file | |
566 png_path : path for new PNG file | |
567 dpi : dots per inch of the generated PNG | |
568 scale : scaling factor for the generated PNG, computed internally when a size is provided | |
569 size : final effective width of the generated PNG | |
570 | |
571 Returns: | |
572 None | |
573 """ | |
574 if size: | |
575 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | |
576 scale = size / image.width | |
577 image = image.resize(scale) | |
578 else: | |
579 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | |
580 | |
581 white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | |
582 white_background = white_background.affine([scale, 0, 0, scale]) | |
583 | |
584 if white_background.bands != image.bands: | |
585 white_background = white_background.extract_band(0) | |
586 | |
587 composite_image = white_background.composite2(image, 'over') | |
588 composite_image.write_to_file(png_path.show()) | |
589 | |
590 #funzione unica, lascio fuori i file e li passo in input | |
591 #conversion from png to pdf | |
592 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | |
593 """ | |
594 Internal utility to convert a PNG to PDF to aid from SVG conversion. | |
595 | |
596 Args: | |
597 png_file : path to PNG file | |
598 pdf_file : path to new PDF file | |
599 | |
600 Returns: | |
601 None | |
602 """ | |
603 image = Image.open(png_file.show()) | |
604 image = image.convert("RGB") | |
605 image.save(pdf_file.show(), "PDF", resolution=100.0) | |
606 | |
607 #function called to reduce redundancy in the code | |
608 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | |
609 """ | |
610 Converts the SVG map at the provided path to PDF. | |
611 | |
612 Args: | |
613 file_svg : path to SVG file | |
614 file_png : path to PNG file | |
615 file_pdf : path to new PDF file | |
616 | |
617 Returns: | |
618 None | |
619 """ | |
620 svg_to_png_with_background(file_svg, file_png) | |
621 try: | |
622 convert_png_to_pdf(file_png, file_pdf) | |
623 print(f'PDF file {file_pdf.filePath} successfully generated.') | |
624 | |
625 except Exception as e: | |
626 raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | |
627 | |
628 ############################ map ############################################## | |
629 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | |
630 """ | |
631 Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | |
632 "result/" folder, used by this tool for output files in collections. | |
633 | |
634 Args: | |
635 dataset1Name : _description_ | |
636 dataset2Name : _description_. Defaults to "rest". | |
637 details : _description_ | |
638 ext : _description_ | |
639 | |
640 Returns: | |
641 utils.FilePath : _description_ | |
642 """ | |
643 # This function returns a util data structure but is extremely specific to this module. | |
644 # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | |
645 # TODO: until a third tool with multiple outputs appears before porting this to utils. | |
646 return utils.FilePath( | |
647 f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | |
648 # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | |
649 # all output files: I don't care, this was never the performance bottleneck of the tool and | |
650 # there is no other net gain in saving and re-using the built string. | |
651 ext, | |
652 prefix = ARGS.output_path) | |
653 | |
654 FIELD_NOT_AVAILABLE = '/' | |
655 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | |
656 fieldsAmt = len(fieldNames) | |
657 with open(outPath.show(), "w", newline = "") as fd: | |
658 writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | |
659 writer.writeheader() | |
660 | |
661 for row in rows: | |
662 sizeMismatch = fieldsAmt - len(row) | |
663 if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | |
664 writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | |
665 | |
666 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | |
667 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: | |
668 fieldNames = ["ids", "P_Value", "fold change"] | |
669 fieldNames.extend(["average_1", "average_2"]) | |
670 | |
671 writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | |
672 | |
673 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: | |
674 # this function compiles the things always in common between comparison modes after enrichment. | |
675 # TODO: organize, name better. | |
676 writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | |
677 for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | |
678 applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) | |
679 | |
680 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | |
681 """ | |
682 Computes the statistical significance score (P-value) of the comparison between coherent data | |
683 from two datasets. The data is supposed to, in both datasets: | |
684 - be related to the same reaction ID; | |
685 - be ordered by sample, such that the item at position i in both lists is related to the | |
686 same sample or cell line. | |
687 | |
688 Args: | |
689 dataset1Data : data from the 1st dataset. | |
690 dataset2Data : data from the 2nd dataset. | |
691 | |
692 Returns: | |
693 tuple: (P-value, Z-score) | |
694 - P-value from a Kolmogorov-Smirnov test on the provided data. | |
695 - Z-score of the difference between means of the two datasets. | |
696 """ | |
697 # Perform Kolmogorov-Smirnov test | |
698 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
699 | |
700 # Calculate means and standard deviations | |
701 mean1 = np.mean(dataset1Data) | |
702 mean2 = np.mean(dataset2Data) | |
703 std1 = np.std(dataset1Data, ddof=1) | |
704 std2 = np.std(dataset2Data, ddof=1) | |
705 | |
706 n1 = len(dataset1Data) | |
707 n2 = len(dataset2Data) | |
708 | |
709 # Calculate Z-score | |
710 z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | |
711 | |
712 return p_value, z_score | |
713 | |
714 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | |
715 #TODO: the following code still suffers from "dumbvarnames-osis" | |
716 tmp :Dict[str, List[Union[float, FoldChange]]] = {} | |
717 count = 0 | |
718 max_z_score = 0 | |
719 | |
720 for l1, l2 in zip(dataset1Data, dataset2Data): | |
721 reactId = ids[count] | |
722 count += 1 | |
723 if not reactId: continue # we skip ids that have already been processed | |
724 | |
725 try: | |
726 p_value, z_score = computePValue(l1, l2) | |
727 avg1 = sum(l1) / len(l1) | |
728 avg2 = sum(l2) / len(l2) | |
729 avg = fold_change(avg1, avg2) | |
730 if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | |
731 tmp[reactId] = [float(p_value), avg, z_score, avg1, avg2] | |
732 except (TypeError, ZeroDivisionError): continue | |
733 | |
734 return tmp, max_z_score | |
735 | |
736 def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: | |
737 """ | |
738 Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | |
739 provided metabolic map. | |
740 | |
741 Args: | |
742 class_pat : the clustered data. | |
743 ids : ids for data association. | |
744 | |
745 | |
746 Returns: | |
747 List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score. | |
748 | |
749 Raises: | |
750 sys.exit : if there are less than 2 classes for comparison | |
751 | |
752 """ | |
753 class_pat = { k.strip() : v for k, v in class_pat.items() } | |
754 #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | |
755 if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | |
756 | |
757 enrichment_results = [] | |
758 | |
759 | |
760 if ARGS.comparison == "manyvsmany": | |
761 for i, j in it.combinations(class_pat.keys(), 2): | |
762 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | |
763 enrichment_results.append((i, j, comparisonDict, max_z_score)) | |
764 | |
765 elif ARGS.comparison == "onevsrest": | |
766 for single_cluster in class_pat.keys(): | |
767 rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | |
768 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | |
769 enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | |
770 | |
771 elif ARGS.comparison == "onevsmany": | |
772 controlItems = class_pat.get(ARGS.control) | |
773 for otherDataset in class_pat.keys(): | |
774 if otherDataset == ARGS.control: | |
775 continue | |
776 comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | |
777 enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | |
778 return enrichment_results | |
779 | |
780 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | |
781 svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | |
782 utils.writeSvg(svgFilePath, core_map) | |
783 | |
784 if ARGS.generate_pdf: | |
785 pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | |
786 pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | |
787 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
788 | |
789 if not ARGS.generate_svg: | |
790 os.remove(svgFilePath.show()) | |
791 | |
792 ClassPat = Dict[str, List[List[float]]] | |
793 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | |
794 # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | |
795 # for the sake of everyone's sanity. | |
796 class_pat :ClassPat = {} | |
797 if ARGS.option == 'datasets': | |
798 num = 1 #TODO: the dataset naming function could be a generator | |
799 for path, name in zip(datasetsPaths, names): | |
800 name = name_dataset(name, num) | |
801 resolve_rules_float, ids = getDatasetValues(path, name) | |
802 if resolve_rules_float != None: | |
803 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | |
804 | |
805 num += 1 | |
806 | |
807 elif ARGS.option == "dataset_class": | |
808 classes = read_dataset(classPath, "class") | |
809 classes = classes.astype(str) | |
810 | |
811 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | |
812 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | |
813 | |
814 return ids, class_pat | |
815 #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | |
816 | |
817 #TODO: create these damn args as FilePath objects | |
818 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | |
819 """ | |
820 Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | |
821 | |
822 Args: | |
823 datasetPath : path to the dataset | |
824 datasetName (str): dataset name, used in error reporting | |
825 | |
826 Returns: | |
827 Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | |
828 """ | |
829 dataset = read_dataset(datasetPath, datasetName) | |
830 IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | |
831 | |
832 dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | |
833 return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | |
834 | |
835 def rgb_to_hex(rgb): | |
836 """ | |
837 Convert RGB values (0-1 range) to hexadecimal color format. | |
838 | |
839 Args: | |
840 rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). | |
841 | |
842 Returns: | |
843 str: The color in hexadecimal format (e.g., '#ff0000' for red). | |
844 """ | |
845 # Convert RGB values (0-1 range) to hexadecimal format | |
846 rgb = (np.array(rgb) * 255).astype(int) | |
847 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | |
848 | |
849 | |
850 | |
851 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | |
852 """ | |
853 Create and save an image of the colormap showing the gradient and its range. | |
854 | |
855 Args: | |
856 min_value (float): The minimum value of the colormap range. | |
857 max_value (float): The maximum value of the colormap range. | |
858 filename (str): The filename for saving the image. | |
859 """ | |
860 | |
861 # Create a colormap using matplotlib | |
862 cmap = plt.get_cmap(colorMap) | |
863 | |
864 # Create a figure and axis | |
865 fig, ax = plt.subplots(figsize=(6, 1)) | |
866 fig.subplots_adjust(bottom=0.5) | |
867 | |
868 # Create a gradient image | |
869 gradient = np.linspace(0, 1, 256) | |
870 gradient = np.vstack((gradient, gradient)) | |
871 | |
872 # Add min and max value annotations | |
873 ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') | |
874 ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') | |
875 | |
876 | |
877 # Display the gradient image | |
878 ax.imshow(gradient, aspect='auto', cmap=cmap) | |
879 ax.set_axis_off() | |
880 | |
881 # Save the image | |
882 plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) | |
883 plt.close() | |
884 pass | |
885 | |
886 def min_nonzero_abs(arr): | |
887 # Flatten the array and filter out zeros, then find the minimum of the remaining values | |
888 non_zero_elements = np.abs(arr)[np.abs(arr) > 0] | |
889 return np.min(non_zero_elements) if non_zero_elements.size > 0 else None | |
890 | |
891 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: | |
892 """ | |
893 Compute and visualize the metabolic map based on mean and median of the input fluxes. | |
894 The fluxes are normalised across classes/datasets and visualised using the given colormap. | |
895 | |
896 Args: | |
897 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
898 class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. | |
899 ids (List[str]): A list of reaction IDs to be used for coloring arrows. | |
900 | |
901 Returns: | |
902 None | |
903 """ | |
904 # Create copies only if they are needed | |
905 metabMap_mean = copy.deepcopy(metabMap) | |
906 metabMap_median = copy.deepcopy(metabMap) | |
907 | |
908 # Compute medians and means | |
909 medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()} | |
910 means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()} | |
911 | |
912 # Normalize medians and means | |
913 max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) | |
914 max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) | |
915 | |
916 min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) | |
917 min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) | |
918 | |
919 medians = {key: median/max_flux_medians for key, median in medians.items()} | |
920 means = {key: mean/max_flux_means for key, mean in means.items()} | |
921 | |
922 save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | |
923 save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | |
924 | |
925 cmap = plt.get_cmap(colormap) | |
926 | |
927 for key in class_pat: | |
928 # Create color mappings for median and mean | |
929 colors_median = { | |
930 rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe' #grey blocked | |
931 for i, rxn_id in enumerate(ids) | |
932 } | |
933 | |
934 colors_mean = { | |
935 rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe' #grey blocked | |
936 for i, rxn_id in enumerate(ids) | |
937 } | |
938 | |
939 for i, rxn_id in enumerate(ids): | |
940 isNegative = medians[key][i] < 0 | |
941 | |
942 # Apply median arrows | |
943 apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative) | |
944 | |
945 isNegative = means[key][i] < 0 | |
946 # Apply mean arrows | |
947 apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative) | |
948 | |
949 # Save and convert the SVG files | |
950 save_and_convert(metabMap_mean, "mean", key) | |
951 save_and_convert(metabMap_median, "median", key) | |
952 | |
953 def apply_arrow(metabMap, rxn_id, color, isNegative): | |
954 """ | |
955 Apply an arrow to a specific reaction in the metabolic map with a given color. | |
956 | |
957 Args: | |
958 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
959 rxn_id (str): The ID of the reaction to which the arrow will be applied. | |
960 color (str): The color of the arrow in hexadecimal format. | |
961 | |
962 Returns: | |
963 None | |
964 """ | |
965 arrow = Arrow(width=5, col=color) | |
966 arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) | |
967 pass | |
968 | |
969 def save_and_convert(metabMap, map_type, key): | |
970 """ | |
971 Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. | |
972 | |
973 Args: | |
974 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
975 map_type (str): The type of map ('mean' or 'median'). | |
976 key (str): The key identifying the specific map. | |
977 | |
978 Returns: | |
979 None | |
980 """ | |
981 svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path) | |
982 utils.writeSvg(svgFilePath, metabMap) | |
983 if ARGS.generate_pdf: | |
984 pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path) | |
985 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) | |
986 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
987 if not ARGS.generate_svg: | |
988 os.remove(svgFilePath.show()) | |
989 | |
990 | |
991 ############################ MAIN ############################################# | |
992 def main(args:List[str] = None) -> None: | |
993 """ | |
994 Initializes everything and sets the program in motion based on the fronted input arguments. | |
995 | |
996 Returns: | |
997 None | |
998 | |
999 Raises: | |
1000 sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | |
1001 """ | |
1002 | |
1003 global ARGS | |
1004 ARGS = process_args(args) | |
1005 | |
1006 if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path) | |
1007 | |
1008 core_map :ET.ElementTree = ARGS.choice_map.getMap( | |
1009 ARGS.tool_dir, | |
1010 utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | |
1011 # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | |
1012 # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | |
1013 # solution can be derived from my comment in FilePath.fromStrPath | |
1014 | |
1015 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) | |
1016 | |
1017 if(ARGS.choice_map == utils.Model.HMRcore): | |
1018 temp_map = utils.Model.HMRcore_no_legend | |
1019 computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | |
1020 elif(ARGS.choice_map == utils.Model.ENGRO2): | |
1021 temp_map = utils.Model.ENGRO2_no_legend | |
1022 computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | |
1023 else: | |
1024 computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) | |
1025 | |
1026 | |
1027 enrichment_results = computeEnrichment(class_pat, ids) | |
1028 for i, j, comparisonDict, max_z_score in enrichment_results: | |
1029 map_copy = copy.deepcopy(core_map) | |
1030 temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j) | |
1031 createOutputMaps(i, j, map_copy) | |
1032 | |
1033 if not ERRORS: return | |
1034 utils.logWarning( | |
1035 f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | |
1036 ARGS.out_log) | |
1037 | |
1038 print('Execution succeded') | |
1039 | |
1040 ############################################################################### | |
1041 if __name__ == "__main__": | |
1042 main() | |
1043 |