comparison COBRAxy/custom_data_generator_beta.py @ 418:919b5b71a61c draft

Uploaded
author francesco_lapi
date Tue, 09 Sep 2025 07:36:30 +0000
parents 5086145cfb96
children ed2c1f9e20ba
comparison
equal deleted inserted replaced
417:e8dd8dca9618 418:919b5b71a61c
6 import pandas as pd 6 import pandas as pd
7 import utils.general_utils as utils 7 import utils.general_utils as utils
8 import utils.rule_parsing as rulesUtils 8 import utils.rule_parsing as rulesUtils
9 from typing import Optional, Tuple, Union, List, Dict 9 from typing import Optional, Tuple, Union, List, Dict
10 import utils.reaction_parsing as reactionUtils 10 import utils.reaction_parsing as reactionUtils
11 import utils.model_utils as modelUtils
11 12
12 ARGS : argparse.Namespace 13 ARGS : argparse.Namespace
13 def process_args(args: List[str] = None) -> argparse.Namespace: 14 def process_args(args: List[str] = None) -> argparse.Namespace:
14 """ 15 """
15 Parse command-line arguments for CustomDataGenerator. 16 Parse command-line arguments for CustomDataGenerator.
69 return cobra.io.load_json_model(file_path.show()) 70 return cobra.io.load_json_model(file_path.show())
70 71
71 except Exception as e: raise utils.DataErr(file_path, e.__str__()) 72 except Exception as e: raise utils.DataErr(file_path, e.__str__())
72 raise utils.DataErr(file_path, 73 raise utils.DataErr(file_path,
73 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") 74 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
74
75 ################################- DATA GENERATION -################################
76 ReactionId = str
77 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
78 """
79 Generates a dictionary mapping reaction ids to rules from the model.
80
81 Args:
82 model : the model to derive data from.
83 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
84
85 Returns:
86 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
87 Dict[ReactionId, str] : the generated dictionary of raw rules.
88 """
89 # Is the below approach convoluted? yes
90 # Ok but is it inefficient? probably
91 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
92 _ruleGetter = lambda reaction : reaction.gene_reaction_rule
93 ruleExtractor = (lambda reaction :
94 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
95
96 return {
97 reaction.id : ruleExtractor(reaction)
98 for reaction in model.reactions
99 if reaction.gene_reaction_rule }
100
101 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
102 """
103 Generates a dictionary mapping reaction ids to reaction formulas from the model.
104
105 Args:
106 model : the model to derive data from.
107 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
108
109 Returns:
110 Dict[ReactionId, str] : the generated dictionary.
111 """
112
113 unparsedReactions = {
114 reaction.id : reaction.reaction
115 for reaction in model.reactions
116 if reaction.reaction
117 }
118
119 if not asParsed: return unparsedReactions
120
121 return reactionUtils.create_reaction_dict(unparsedReactions)
122
123 def get_medium(model:cobra.Model) -> pd.DataFrame:
124 trueMedium=[]
125 for r in model.reactions:
126 positiveCoeff=0
127 for m in r.metabolites:
128 if r.get_coefficient(m.id)>0:
129 positiveCoeff=1;
130 if (positiveCoeff==0 and r.lower_bound<0):
131 trueMedium.append(r.id)
132
133 df_medium = pd.DataFrame()
134 df_medium["reaction"] = trueMedium
135 return df_medium
136
137 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
138
139 rxns = []
140 for reaction in model.reactions:
141 rxns.append(reaction.id)
142
143 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
144
145 for reaction in model.reactions:
146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
147 return bounds
148
149
150
151 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
152 """
153 Generates a DataFrame containing compartment information for each reaction.
154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
155
156 Args:
157 model: the COBRA model to extract compartment data from.
158
159 Returns:
160 pd.DataFrame: DataFrame with ReactionID and compartment columns
161 """
162 pathway_data = []
163
164 # First pass: determine the maximum number of pathways any reaction has
165 max_pathways = 0
166 reaction_pathways = {}
167
168 for reaction in model.reactions:
169 # Get unique pathways from all metabolites in the reaction
170 if type(reaction.annotation['pathways']) == list:
171 reaction_pathways[reaction.id] = reaction.annotation['pathways']
172 max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
173 else:
174 reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
175
176 # Create column names for pathways
177 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
178
179 # Second pass: create the data
180 for reaction_id, pathways in reaction_pathways.items():
181 row = {"ReactionID": reaction_id}
182
183 # Fill pathway columns
184 for i in range(max_pathways):
185 col_name = pathway_columns[i]
186 if i < len(pathways):
187 row[col_name] = pathways[i]
188 else:
189 row[col_name] = None # or "" if you prefer empty strings
190
191 pathway_data.append(row)
192
193 return pd.DataFrame(pathway_data)
194 75
195 76
196 ###############################- FILE SAVING -################################ 77 ###############################- FILE SAVING -################################
197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: 78 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
198 """ 79 """
294 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default": 175 if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default":
295 176
296 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC ")) 177 model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
297 178
298 # generate data 179 # generate data
299 rules = generate_rules(model, asParsed = False) 180 rules = modelUtils.generate_rules(model, asParsed = False)
300 reactions = generate_reactions(model, asParsed = False) 181 reactions = modelUtils.generate_reactions(model, asParsed = False)
301 bounds = generate_bounds(model) 182 bounds = modelUtils.generate_bounds(model)
302 medium = get_medium(model) 183 medium = modelUtils.get_medium(model)
303 if ARGS.name == "ENGRO2": 184 if ARGS.name == "ENGRO2":
304 compartments = generate_compartments(model) 185 compartments = modelUtils.generate_compartments(model)
305 186
306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) 187 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) 188 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
308 189
309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) 190 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})