comparison COBRAxy/flux_to_map.py @ 242:c6d78b0d324d draft

Uploaded
author francesco_lapi
date Wed, 15 Jan 2025 10:32:09 +0000
parents 049aa0f4844f
children 5aaf15260ca6
comparison
equal deleted inserted replaced
241:049aa0f4844f 242:c6d78b0d324d
696 """ 696 """
697 # Perform Kolmogorov-Smirnov test 697 # Perform Kolmogorov-Smirnov test
698 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) 698 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data)
699 699
700 # Calculate means and standard deviations 700 # Calculate means and standard deviations
701 mean1 = np.mean(dataset1Data) 701 mean1 = np.nanmean(dataset1Data)
702 mean2 = np.mean(dataset2Data) 702 mean2 = np.nanmean(dataset2Data)
703 std1 = np.std(dataset1Data, ddof=1) 703 std1 = np.std(dataset1Data, ddof=1)
704 std2 = np.std(dataset2Data, ddof=1) 704 std2 = np.std(dataset2Data, ddof=1)
705 705
706 n1 = len(dataset1Data) 706 n1 = len(dataset1Data)
707 n2 = len(dataset2Data) 707 n2 = len(dataset2Data)
956 # Create copies only if they are needed 956 # Create copies only if they are needed
957 metabMap_mean = copy.deepcopy(metabMap) 957 metabMap_mean = copy.deepcopy(metabMap)
958 metabMap_median = copy.deepcopy(metabMap) 958 metabMap_median = copy.deepcopy(metabMap)
959 959
960 # Compute medians and means 960 # Compute medians and means
961 medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()} 961 medians = {key: np.round(np.nanmedian(np.array(value), axis=1), 6) for key, value in class_pat.items()}
962 means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()} 962 means = {key: np.round(np.nanmean(np.array(value), axis=1),6) for key, value in class_pat.items()}
963 963
964 # Normalize medians and means 964 # Normalize medians and means
965 max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) 965 max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values())
966 max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) 966 max_flux_means = max(np.max(np.abs(arr)) for arr in means.values())
967 967