comparison COBRAxy/metabolic_model_setting.py @ 490:c6ea189ea7e9 draft

Uploaded
author francesco_lapi
date Mon, 29 Sep 2025 15:13:21 +0000
parents 5b625d91bc7f
children
comparison
equal deleted inserted replaced
489:97eea560a10f 490:c6ea189ea7e9
14 import pandas as pd 14 import pandas as pd
15 import utils.general_utils as utils 15 import utils.general_utils as utils
16 from typing import Optional, Tuple, List 16 from typing import Optional, Tuple, List
17 import utils.model_utils as modelUtils 17 import utils.model_utils as modelUtils
18 import logging 18 import logging
19 from pathlib import Path
20
19 21
20 ARGS : argparse.Namespace 22 ARGS : argparse.Namespace
21 def process_args(args: List[str] = None) -> argparse.Namespace: 23 def process_args(args: List[str] = None) -> argparse.Namespace:
22 """ 24 """
23 Parse command-line arguments for metabolic_model_setting. 25 Parse command-line arguments for metabolic_model_setting.
145 try: 147 try:
146 os.makedirs(os.path.dirname(path) or ".", exist_ok=True) 148 os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
147 df.to_csv(path, sep="\t", index=False) 149 df.to_csv(path, sep="\t", index=False)
148 except Exception as e: 150 except Exception as e:
149 raise utils.DataErr(path, f"failed writing tabular output: {e}") 151 raise utils.DataErr(path, f"failed writing tabular output: {e}")
152
153 def is_placeholder(gid) -> bool:
154 """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty)."""
155 if gid is None:
156 return True
157 s = str(gid).strip().lower()
158 return s in {"0", "", "na", "nan"} # lowercase for simple matching
159
160 def sample_valid_gene_ids(genes, limit=10):
161 """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON)."""
162 out = []
163 for g in genes:
164 gid = getattr(g, "id", getattr(g, "gene_id", g))
165 if not is_placeholder(gid):
166 out.append(str(gid))
167 if len(out) >= limit:
168 break
169 return out
150 170
151 171
152 ###############################- ENTRY POINT -################################ 172 ###############################- ENTRY POINT -################################
153 def main(args:List[str] = None) -> None: 173 def main(args:List[str] = None) -> None:
154 """ 174 """
198 # Apply selected medium uptake bounds (negative for uptake) 218 # Apply selected medium uptake bounds (negative for uptake)
199 for reaction, value in medium.items(): 219 for reaction, value in medium.items():
200 if value is not None: 220 if value is not None:
201 model.reactions.get_by_id(reaction).lower_bound = -float(value) 221 model.reactions.get_by_id(reaction).lower_bound = -float(value)
202 222
223 # Initialize translation_issues dictionary
224 translation_issues = {}
225
203 if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default": 226 if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
204 logging.basicConfig(level=logging.INFO) 227 logging.basicConfig(level=logging.INFO)
205 logger = logging.getLogger(__name__) 228 logger = logging.getLogger(__name__)
206 229
207 model = modelUtils.translate_model_genes( 230 model, translation_issues = modelUtils.translate_model_genes(
208 model=model, 231 model=model,
209 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}), 232 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
210 target_nomenclature=ARGS.gene_format, 233 target_nomenclature=ARGS.gene_format,
211 source_nomenclature='HGNC_symbol', 234 source_nomenclature='HGNC_symbol',
212 logger=logger 235 logger=logger
213 ) 236 )
214 237
238 if ARGS.name == "Custom_model" and ARGS.gene_format != "Default":
239 logging.basicConfig(level=logging.INFO)
240 logger = logging.getLogger(__name__)
241
242 tmp_check = []
243 for g in model.genes[1:5]: # check first 3 genes only
244 tmp_check.append(modelUtils.gene_type(g.id, "Custom_model"))
245
246 if len(set(tmp_check)) > 1:
247 raise utils.DataErr("Custom_model", "The custom model contains genes with mixed or unrecognized nomenclature. Please ensure all genes use the same recognized nomenclature before applying gene_format conversion.")
248 else:
249 source_nomenclature = tmp_check[0]
250
251 if source_nomenclature != ARGS.gene_format:
252 model, translation_issues = modelUtils.translate_model_genes(
253 model=model,
254 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
255 target_nomenclature=ARGS.gene_format,
256 source_nomenclature=source_nomenclature,
257 logger=logger
258 )
259
260
261
262
263 if ARGS.name == "Custom_model" and ARGS.gene_format != "Default":
264 logger = logging.getLogger(__name__)
265
266 # Take a small, clean sample of gene IDs (skipping placeholders like 0)
267 ids_sample = sample_valid_gene_ids(model.genes, limit=10)
268 if not ids_sample:
269 raise utils.DataErr(
270 "Custom_model",
271 "No valid gene IDs found (many may be placeholders like 0)."
272 )
273
274 # Detect source nomenclature on the sample
275 types = []
276 for gid in ids_sample:
277 try:
278 t = modelUtils.gene_type(gid, "Custom_model")
279 except Exception as e:
280 # Keep it simple: skip problematic IDs
281 logger.debug(f"gene_type failed for {gid}: {e}")
282 t = None
283 if t:
284 types.append(t)
285
286 if not types:
287 raise utils.DataErr(
288 "Custom_model",
289 "Could not detect a known gene nomenclature from the sample."
290 )
291
292 unique_types = set(types)
293 if len(unique_types) > 1:
294 raise utils.DataErr(
295 "Custom_model",
296 "Mixed or inconsistent gene nomenclatures detected. "
297 "Please unify them before converting."
298 )
299
300 source_nomenclature = types[0]
301
302 # Convert only if needed
303 if source_nomenclature != ARGS.gene_format:
304 model, translation_issues = modelUtils.translate_model_genes(
305 model=model,
306 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
307 target_nomenclature=ARGS.gene_format,
308 source_nomenclature=source_nomenclature,
309 logger=logger
310 )
311
215 # generate data 312 # generate data
216 rules = modelUtils.generate_rules(model, asParsed = False) 313 rules = modelUtils.generate_rules(model, asParsed = False)
217 reactions = modelUtils.generate_reactions(model, asParsed = False) 314 reactions = modelUtils.generate_reactions(model, asParsed = False)
218 bounds = modelUtils.generate_bounds(model) 315 bounds = modelUtils.generate_bounds(model)
219 medium = modelUtils.get_medium(model) 316 medium = modelUtils.get_medium(model)
223 compartments = modelUtils.generate_compartments(model) 320 compartments = modelUtils.generate_compartments(model)
224 321
225 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "GPR"]) 322 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "GPR"])
226 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Formula"]) 323 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Formula"])
227 324
325 # Create DataFrame for translation issues
326 df_translation_issues = pd.DataFrame([
327 {"ReactionID": rxn_id, "TranslationIssues": issues}
328 for rxn_id, issues in translation_issues.items()
329 ])
330
228 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) 331 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
229 df_medium = medium.rename(columns = {"reaction": "ReactionID"}) 332 df_medium = medium.rename(columns = {"reaction": "ReactionID"})
230 df_medium["InMedium"] = True 333 df_medium["InMedium"] = True
231 334
232 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") 335 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
233 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") 336 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
234 merged = merged.merge(objective_function, on = "ReactionID", how = "outer") 337 merged = merged.merge(objective_function, on = "ReactionID", how = "outer")
235 if ARGS.name == "ENGRO2": 338 if ARGS.name == "ENGRO2":
236 merged = merged.merge(compartments, on = "ReactionID", how = "outer") 339 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
237 merged = merged.merge(df_medium, on = "ReactionID", how = "left") 340 merged = merged.merge(df_medium, on = "ReactionID", how = "left")
341
342 # Add translation issues column
343 if not df_translation_issues.empty:
344 merged = merged.merge(df_translation_issues, on = "ReactionID", how = "left")
345 merged["TranslationIssues"] = merged["TranslationIssues"].fillna("")
346 else:
347 # Add empty TranslationIssues column if no issues found
348 #merged["TranslationIssues"] = ""
349 pass
238 350
239 merged["InMedium"] = merged["InMedium"].fillna(False) 351 merged["InMedium"] = merged["InMedium"].fillna(False)
240 352
241 merged = merged.sort_values(by = "InMedium", ascending = False) 353 merged = merged.sort_values(by = "InMedium", ascending = False)
242 354