Mercurial > repos > bimib > cobraxy
comparison ras_generator.py @ 262:d2d6a332d269 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Tue, 04 Mar 2025 15:23:25 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 261:1df2d8de156f | 262:d2d6a332d269 |
|---|---|
| 1 from __future__ import division | |
| 2 # galaxy complains this ^^^ needs to be at the very beginning of the file, for some reason. | |
| 3 import sys | |
| 4 import argparse | |
| 5 import collections | |
| 6 import pandas as pd | |
| 7 import pickle as pk | |
| 8 import utils.general_utils as utils | |
| 9 import utils.rule_parsing as ruleUtils | |
| 10 from typing import Union, Optional, List, Dict, Tuple, TypeVar | |
| 11 | |
| 12 ERRORS = [] | |
| 13 ########################## argparse ########################################## | |
| 14 ARGS :argparse.Namespace | |
| 15 def process_args(args:List[str] = None) -> argparse.Namespace: | |
| 16 """ | |
| 17 Processes command-line arguments. | |
| 18 | |
| 19 Args: | |
| 20 args (list): List of command-line arguments. | |
| 21 | |
| 22 Returns: | |
| 23 Namespace: An object containing parsed arguments. | |
| 24 """ | |
| 25 parser = argparse.ArgumentParser( | |
| 26 usage = '%(prog)s [options]', | |
| 27 description = "process some value's genes to create a comparison's map.") | |
| 28 | |
| 29 parser.add_argument( | |
| 30 '-rs', '--rules_selector', | |
| 31 type = utils.Model, default = utils.Model.HMRcore, choices = list(utils.Model), | |
| 32 help = 'chose which type of dataset you want use') | |
| 33 | |
| 34 parser.add_argument("-rl", "--rule_list", type = str, | |
| 35 help = "path to input file with custom rules, if provided") | |
| 36 | |
| 37 parser.add_argument("-rn", "--rules_name", type = str, help = "custom rules name") | |
| 38 # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in | |
| 39 | |
| 40 parser.add_argument( | |
| 41 '-n', '--none', | |
| 42 type = utils.Bool("none"), default = True, | |
| 43 help = 'compute Nan values') | |
| 44 | |
| 45 parser.add_argument( | |
| 46 '-td', '--tool_dir', | |
| 47 type = str, | |
| 48 required = True, help = 'your tool directory') | |
| 49 | |
| 50 parser.add_argument( | |
| 51 '-ol', '--out_log', | |
| 52 type = str, | |
| 53 help = "Output log") | |
| 54 | |
| 55 parser.add_argument( | |
| 56 '-in', '--input', #id รจ diventato in | |
| 57 type = str, | |
| 58 help = 'input dataset') | |
| 59 | |
| 60 parser.add_argument( | |
| 61 '-ra', '--ras_output', | |
| 62 type = str, | |
| 63 required = True, help = 'ras output') | |
| 64 | |
| 65 | |
| 66 return parser.parse_args(args) | |
| 67 | |
| 68 ############################ dataset input #################################### | |
| 69 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 70 """ | |
| 71 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
| 72 | |
| 73 Args: | |
| 74 data (str): Path to the CSV file containing the dataset. | |
| 75 name (str): Name of the dataset, used in error messages. | |
| 76 | |
| 77 Returns: | |
| 78 pandas.DataFrame: DataFrame containing the dataset. | |
| 79 | |
| 80 Raises: | |
| 81 pd.errors.EmptyDataError: If the CSV file is empty. | |
| 82 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
| 83 """ | |
| 84 try: | |
| 85 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 86 except pd.errors.EmptyDataError: | |
| 87 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 88 if len(dataset.columns) < 2: | |
| 89 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 90 return dataset | |
| 91 | |
| 92 ############################ load id e rules ################################## | |
| 93 def load_id_rules(reactions :Dict[str, Dict[str, List[str]]]) -> Tuple[List[str], List[Dict[str, List[str]]]]: | |
| 94 """ | |
| 95 Load IDs and rules from a dictionary of reactions. | |
| 96 | |
| 97 Args: | |
| 98 reactions (dict): A dictionary where keys are IDs and values are rules. | |
| 99 | |
| 100 Returns: | |
| 101 tuple: A tuple containing two lists, the first list containing IDs and the second list containing rules. | |
| 102 """ | |
| 103 ids, rules = [], [] | |
| 104 for key, value in reactions.items(): | |
| 105 ids.append(key) | |
| 106 rules.append(value) | |
| 107 return (ids, rules) | |
| 108 | |
| 109 ############################ check_methods #################################### | |
| 110 def gene_type(l :str, name :str) -> str: | |
| 111 """ | |
| 112 Determine the type of gene ID. | |
| 113 | |
| 114 Args: | |
| 115 l (str): The gene identifier to check. | |
| 116 name (str): The name of the dataset, used in error messages. | |
| 117 | |
| 118 Returns: | |
| 119 str: The type of gene ID ('hugo_id', 'ensembl_gene_id', 'symbol', or 'entrez_id'). | |
| 120 | |
| 121 Raises: | |
| 122 sys.exit: If the gene ID type is not supported, the execution is aborted. | |
| 123 """ | |
| 124 if check_hgnc(l): | |
| 125 return 'hugo_id' | |
| 126 elif check_ensembl(l): | |
| 127 return 'ensembl_gene_id' | |
| 128 elif check_symbol(l): | |
| 129 return 'symbol' | |
| 130 elif check_entrez(l): | |
| 131 return 'entrez_id' | |
| 132 else: | |
| 133 sys.exit('Execution aborted:\n' + | |
| 134 'gene ID type in ' + name + ' not supported. Supported ID'+ | |
| 135 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') | |
| 136 | |
| 137 def check_hgnc(l :str) -> bool: | |
| 138 """ | |
| 139 Check if a gene identifier follows the HGNC format. | |
| 140 | |
| 141 Args: | |
| 142 l (str): The gene identifier to check. | |
| 143 | |
| 144 Returns: | |
| 145 bool: True if the gene identifier follows the HGNC format, False otherwise. | |
| 146 """ | |
| 147 if len(l) > 5: | |
| 148 if (l.upper()).startswith('HGNC:'): | |
| 149 return l[5:].isdigit() | |
| 150 else: | |
| 151 return False | |
| 152 else: | |
| 153 return False | |
| 154 | |
| 155 def check_ensembl(l :str) -> bool: | |
| 156 """ | |
| 157 Check if a gene identifier follows the Ensembl format. | |
| 158 | |
| 159 Args: | |
| 160 l (str): The gene identifier to check. | |
| 161 | |
| 162 Returns: | |
| 163 bool: True if the gene identifier follows the Ensembl format, False otherwise. | |
| 164 """ | |
| 165 return l.upper().startswith('ENS') | |
| 166 | |
| 167 | |
| 168 def check_symbol(l :str) -> bool: | |
| 169 """ | |
| 170 Check if a gene identifier follows the symbol format. | |
| 171 | |
| 172 Args: | |
| 173 l (str): The gene identifier to check. | |
| 174 | |
| 175 Returns: | |
| 176 bool: True if the gene identifier follows the symbol format, False otherwise. | |
| 177 """ | |
| 178 if len(l) > 0: | |
| 179 if l[0].isalpha() and l[1:].isalnum(): | |
| 180 return True | |
| 181 else: | |
| 182 return False | |
| 183 else: | |
| 184 return False | |
| 185 | |
| 186 def check_entrez(l :str) -> bool: | |
| 187 """ | |
| 188 Check if a gene identifier follows the Entrez ID format. | |
| 189 | |
| 190 Args: | |
| 191 l (str): The gene identifier to check. | |
| 192 | |
| 193 Returns: | |
| 194 bool: True if the gene identifier follows the Entrez ID format, False otherwise. | |
| 195 """ | |
| 196 if len(l) > 0: | |
| 197 return l.isdigit() | |
| 198 else: | |
| 199 return False | |
| 200 | |
| 201 ############################ gene ############################################# | |
| 202 def data_gene(gene: pd.DataFrame, type_gene: str, name: str, gene_custom: Optional[Dict[str, str]]) -> Dict[str, str]: | |
| 203 """ | |
| 204 Process gene data to ensure correct formatting and handle duplicates. | |
| 205 | |
| 206 Args: | |
| 207 gene (DataFrame): DataFrame containing gene data. | |
| 208 type_gene (str): Type of gene data (e.g., 'hugo_id', 'ensembl_gene_id', 'symbol', 'entrez_id'). | |
| 209 name (str): Name of the dataset. | |
| 210 gene_custom (dict or None): Custom gene data dictionary if provided. | |
| 211 | |
| 212 Returns: | |
| 213 dict: A dictionary containing gene data with gene IDs as keys and corresponding values. | |
| 214 """ | |
| 215 args = process_args() | |
| 216 for i in range(len(gene)): | |
| 217 tmp = gene.iloc[i, 0] | |
| 218 gene.iloc[i, 0] = tmp.strip().split('.')[0] | |
| 219 | |
| 220 gene_dup = [item for item, count in | |
| 221 collections.Counter(gene[gene.columns[0]]).items() if count > 1] | |
| 222 pat_dup = [item for item, count in | |
| 223 collections.Counter(list(gene.columns)).items() if count > 1] | |
| 224 | |
| 225 gene_in_rule = None | |
| 226 | |
| 227 if gene_dup: | |
| 228 if gene_custom == None: | |
| 229 print(args.rules_selector) | |
| 230 print(args.rules_selector == 'ENGRO2') | |
| 231 | |
| 232 if args.rules_selector == 'HMRcore': | |
| 233 print(1) | |
| 234 gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/HMRcore_genes.p', 'rb')) | |
| 235 | |
| 236 elif args.rules_selector == 'Recon': | |
| 237 print(2) | |
| 238 gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/Recon_genes.p', 'rb')) | |
| 239 | |
| 240 elif args.rules_selector == 'ENGRO2': | |
| 241 print(3) | |
| 242 gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/ENGRO2_genes.p', 'rb')) | |
| 243 | |
| 244 utils.logWarning(f"{args.tool_dir}'/local/pickle files/ENGRO2_genes.p'", ARGS.out_log) | |
| 245 | |
| 246 gene_in_rule = gene_in_rule.get(type_gene) | |
| 247 | |
| 248 else: | |
| 249 gene_in_rule = gene_custom | |
| 250 | |
| 251 tmp = [] | |
| 252 for i in gene_dup: | |
| 253 if gene_in_rule.get(i) == 'ok': | |
| 254 tmp.append(i) | |
| 255 if tmp: | |
| 256 sys.exit('Execution aborted because gene ID ' | |
| 257 +str(tmp)+' in '+name+' is duplicated\n') | |
| 258 | |
| 259 if pat_dup: utils.logWarning(f"Warning: duplicated label\n{pat_dup} in {name}", ARGS.out_log) | |
| 260 return (gene.set_index(gene.columns[0])).to_dict() | |
| 261 | |
| 262 ############################ resolve ########################################## | |
| 263 def replace_gene_value(l :str, d :str) -> Tuple[Union[int, float], list]: | |
| 264 """ | |
| 265 Replace gene identifiers with corresponding values from a dictionary. | |
| 266 | |
| 267 Args: | |
| 268 l (str): String of gene identifier. | |
| 269 d (str): String corresponding to its value. | |
| 270 | |
| 271 Returns: | |
| 272 tuple: A tuple containing two lists: the first list contains replaced values, and the second list contains any errors encountered during replacement. | |
| 273 """ | |
| 274 tmp = [] | |
| 275 err = [] | |
| 276 while l: | |
| 277 if isinstance(l[0], list): | |
| 278 tmp_rules, tmp_err = replace_gene_value(l[0], d) | |
| 279 tmp.append(tmp_rules) | |
| 280 err.extend(tmp_err) | |
| 281 else: | |
| 282 value = replace_gene(l[0], d) | |
| 283 tmp.append(value) | |
| 284 if value == None: | |
| 285 err.append(l[0]) | |
| 286 l = l[1:] | |
| 287 return (tmp, err) | |
| 288 | |
| 289 def replace_gene(l :str, d :str) -> Union[int, float]: | |
| 290 """ | |
| 291 Replace a single gene identifier with its corresponding value from a dictionary. | |
| 292 | |
| 293 Args: | |
| 294 l (str): Gene identifier to replace. | |
| 295 d (str): String corresponding to its value. | |
| 296 | |
| 297 Returns: | |
| 298 float/int: Corresponding value from the dictionary if found, None otherwise. | |
| 299 | |
| 300 Raises: | |
| 301 sys.exit: If the value associated with the gene identifier is not valid. | |
| 302 """ | |
| 303 if l =='and' or l == 'or': | |
| 304 return l | |
| 305 else: | |
| 306 value = d.get(l, None) | |
| 307 if not(value == None or isinstance(value, (int, float))): | |
| 308 sys.exit('Execution aborted: ' + value + ' value not valid\n') | |
| 309 return value | |
| 310 | |
| 311 T = TypeVar("T", bound = Optional[Union[int, float]]) | |
| 312 def computes(val1 :T, op :str, val2 :T, cn :bool) -> T: | |
| 313 """ | |
| 314 Compute the RAS value between two value and an operator ('and' or 'or'). | |
| 315 | |
| 316 Args: | |
| 317 val1(Optional(Union[float, int])): First value. | |
| 318 op (str): Operator ('and' or 'or'). | |
| 319 val2(Optional(Union[float, int])): Second value. | |
| 320 cn (bool): Control boolean value. | |
| 321 | |
| 322 Returns: | |
| 323 Optional(Union[float, int]): Result of the computation. | |
| 324 """ | |
| 325 if val1 != None and val2 != None: | |
| 326 if op == 'and': | |
| 327 return min(val1, val2) | |
| 328 else: | |
| 329 return val1 + val2 | |
| 330 elif op == 'and': | |
| 331 if cn is True: | |
| 332 if val1 != None: | |
| 333 return val1 | |
| 334 elif val2 != None: | |
| 335 return val2 | |
| 336 else: | |
| 337 return None | |
| 338 else: | |
| 339 return None | |
| 340 else: | |
| 341 if val1 != None: | |
| 342 return val1 | |
| 343 elif val2 != None: | |
| 344 return val2 | |
| 345 else: | |
| 346 return None | |
| 347 | |
| 348 # ris should be Literal[None] but Literal is not supported in Python 3.7 | |
| 349 def control(ris, l :List[Union[int, float, list]], cn :bool) -> Union[bool, int, float]: #Union[Literal[False], int, float]: | |
| 350 """ | |
| 351 Control the format of the expression. | |
| 352 | |
| 353 Args: | |
| 354 ris: Intermediate result. | |
| 355 l (list): Expression to control. | |
| 356 cn (bool): Control boolean value. | |
| 357 | |
| 358 Returns: | |
| 359 Union[Literal[False], int, float]: Result of the control. | |
| 360 """ | |
| 361 if len(l) == 1: | |
| 362 if isinstance(l[0], (float, int)) or l[0] == None: | |
| 363 return l[0] | |
| 364 elif isinstance(l[0], list): | |
| 365 return control(None, l[0], cn) | |
| 366 else: | |
| 367 return False | |
| 368 elif len(l) > 2: | |
| 369 return control_list(ris, l, cn) | |
| 370 else: | |
| 371 return False | |
| 372 | |
| 373 def control_list(ris, l :List[Optional[Union[float, int, list]]], cn :bool) -> Optional[bool]: #Optional[Literal[False]]: | |
| 374 """ | |
| 375 Control the format of a list of expressions. | |
| 376 | |
| 377 Args: | |
| 378 ris: Intermediate result. | |
| 379 l (list): List of expressions to control. | |
| 380 cn (bool): Control boolean value. | |
| 381 | |
| 382 Returns: | |
| 383 Optional[Literal[False]]: Result of the control. | |
| 384 """ | |
| 385 while l: | |
| 386 if len(l) == 1: | |
| 387 return False | |
| 388 elif (isinstance(l[0], (float, int)) or | |
| 389 l[0] == None) and l[1] in ['and', 'or']: | |
| 390 if isinstance(l[2], (float, int)) or l[2] == None: | |
| 391 ris = computes(l[0], l[1], l[2], cn) | |
| 392 elif isinstance(l[2], list): | |
| 393 tmp = control(None, l[2], cn) | |
| 394 if tmp is False: | |
| 395 return False | |
| 396 else: | |
| 397 ris = computes(l[0], l[1], tmp, cn) | |
| 398 else: | |
| 399 return False | |
| 400 l = l[3:] | |
| 401 elif l[0] in ['and', 'or']: | |
| 402 if isinstance(l[1], (float, int)) or l[1] == None: | |
| 403 ris = computes(ris, l[0], l[1], cn) | |
| 404 elif isinstance(l[1], list): | |
| 405 tmp = control(None,l[1], cn) | |
| 406 if tmp is False: | |
| 407 return False | |
| 408 else: | |
| 409 ris = computes(ris, l[0], tmp, cn) | |
| 410 else: | |
| 411 return False | |
| 412 l = l[2:] | |
| 413 elif isinstance(l[0], list) and l[1] in ['and', 'or']: | |
| 414 if isinstance(l[2], (float, int)) or l[2] == None: | |
| 415 tmp = control(None, l[0], cn) | |
| 416 if tmp is False: | |
| 417 return False | |
| 418 else: | |
| 419 ris = computes(tmp, l[1], l[2], cn) | |
| 420 elif isinstance(l[2], list): | |
| 421 tmp = control(None, l[0], cn) | |
| 422 tmp2 = control(None, l[2], cn) | |
| 423 if tmp is False or tmp2 is False: | |
| 424 return False | |
| 425 else: | |
| 426 ris = computes(tmp, l[1], tmp2, cn) | |
| 427 else: | |
| 428 return False | |
| 429 l = l[3:] | |
| 430 else: | |
| 431 return False | |
| 432 return ris | |
| 433 | |
| 434 ResolvedRules = Dict[str, List[Optional[Union[float, int]]]] | |
| 435 def resolve(genes: Dict[str, str], rules: List[str], ids: List[str], resolve_none: bool, name: str) -> Tuple[Optional[ResolvedRules], Optional[list]]: | |
| 436 """ | |
| 437 Resolve rules using gene data to compute scores for each rule. | |
| 438 | |
| 439 Args: | |
| 440 genes (dict): Dictionary containing gene data with gene IDs as keys and corresponding values. | |
| 441 rules (list): List of rules to resolve. | |
| 442 ids (list): List of IDs corresponding to the rules. | |
| 443 resolve_none (bool): Flag indicating whether to resolve None values in the rules. | |
| 444 name (str): Name of the dataset. | |
| 445 | |
| 446 Returns: | |
| 447 tuple: A tuple containing resolved rules as a dictionary and a list of gene IDs not found in the data. | |
| 448 """ | |
| 449 resolve_rules = {} | |
| 450 not_found = [] | |
| 451 flag = False | |
| 452 for key, value in genes.items(): | |
| 453 tmp_resolve = [] | |
| 454 for i in range(len(rules)): | |
| 455 tmp = rules[i] | |
| 456 if tmp: | |
| 457 tmp, err = replace_gene_value(tmp, value) | |
| 458 if err: | |
| 459 not_found.extend(err) | |
| 460 ris = control(None, tmp, resolve_none) | |
| 461 if ris is False or ris == None: | |
| 462 tmp_resolve.append(None) | |
| 463 else: | |
| 464 tmp_resolve.append(ris) | |
| 465 flag = True | |
| 466 else: | |
| 467 tmp_resolve.append(None) | |
| 468 resolve_rules[key] = tmp_resolve | |
| 469 | |
| 470 if flag is False: | |
| 471 utils.logWarning( | |
| 472 f"Warning: no computable score (due to missing gene values) for class {name}, the class has been disregarded", | |
| 473 ARGS.out_log) | |
| 474 | |
| 475 return (None, None) | |
| 476 | |
| 477 return (resolve_rules, list(set(not_found))) | |
| 478 ############################ create_ras ####################################### | |
| 479 def create_ras(resolve_rules: Optional[ResolvedRules], dataset_name: str, rules: List[str], ids: List[str], file: str) -> None: | |
| 480 """ | |
| 481 Create a RAS (Reaction Activity Score) file from resolved rules. | |
| 482 | |
| 483 Args: | |
| 484 resolve_rules (dict): Dictionary containing resolved rules. | |
| 485 dataset_name (str): Name of the dataset. | |
| 486 rules (list): List of rules. | |
| 487 file (str): Path to the output RAS file. | |
| 488 | |
| 489 Returns: | |
| 490 None | |
| 491 """ | |
| 492 if resolve_rules is None: | |
| 493 utils.logWarning(f"Couldn't generate RAS for current dataset: {dataset_name}", ARGS.out_log) | |
| 494 | |
| 495 for geni in resolve_rules.values(): | |
| 496 for i, valori in enumerate(geni): | |
| 497 if valori == None: | |
| 498 geni[i] = 'None' | |
| 499 | |
| 500 output_ras = pd.DataFrame.from_dict(resolve_rules) | |
| 501 | |
| 502 output_ras.insert(0, 'Reactions', ids) | |
| 503 output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) | |
| 504 | |
| 505 text_file = open(file, "w") | |
| 506 | |
| 507 text_file.write(output_to_csv) | |
| 508 text_file.close() | |
| 509 | |
| 510 ################################- NEW RAS COMPUTATION -################################ | |
| 511 Expr = Optional[Union[int, float]] | |
| 512 Ras = Expr | |
| 513 def ras_for_cell_lines(dataset: pd.DataFrame, rules: Dict[str, ruleUtils.OpList]) -> Dict[str, Dict[str, Ras]]: | |
| 514 """ | |
| 515 Generates the RAS scores for each cell line found in the dataset. | |
| 516 | |
| 517 Args: | |
| 518 dataset (pd.DataFrame): Dataset containing gene values. | |
| 519 rules (dict): The dict containing reaction ids as keys and rules as values. | |
| 520 | |
| 521 Side effects: | |
| 522 dataset : mut | |
| 523 | |
| 524 Returns: | |
| 525 dict: A dictionary where each key corresponds to a cell line name and each value is a dictionary | |
| 526 where each key corresponds to a reaction ID and each value is its computed RAS score. | |
| 527 """ | |
| 528 ras_values_by_cell_line = {} | |
| 529 dataset.set_index(dataset.columns[0], inplace=True) | |
| 530 # Considera tutte le colonne tranne la prima in cui ci sono gli hugo quindi va scartata | |
| 531 for cell_line_name in dataset.columns[1:]: | |
| 532 cell_line = dataset[cell_line_name].to_dict() | |
| 533 ras_values_by_cell_line[cell_line_name]= get_ras_values(rules, cell_line) | |
| 534 return ras_values_by_cell_line | |
| 535 | |
| 536 def get_ras_values(value_rules: Dict[str, ruleUtils.OpList], dataset: Dict[str, Expr]) -> Dict[str, Ras]: | |
| 537 """ | |
| 538 Computes the RAS (Reaction Activity Score) values for each rule in the given dict. | |
| 539 | |
| 540 Args: | |
| 541 value_rules (dict): A dictionary where keys are reaction ids and values are OpLists. | |
| 542 dataset : gene expression data of one cell line. | |
| 543 | |
| 544 Returns: | |
| 545 dict: A dictionary where keys are reaction ids and values are the computed RAS values for each rule. | |
| 546 """ | |
| 547 return {key: ras_op_list(op_list, dataset) for key, op_list in value_rules.items()} | |
| 548 | |
| 549 def get_gene_expr(dataset :Dict[str, Expr], name :str) -> Expr: | |
| 550 """ | |
| 551 Extracts the gene expression of the given gene from a cell line dataset. | |
| 552 | |
| 553 Args: | |
| 554 dataset : gene expression data of one cell line. | |
| 555 name : gene name. | |
| 556 | |
| 557 Returns: | |
| 558 Expr : the gene's expression value. | |
| 559 """ | |
| 560 expr = dataset.get(name, None) | |
| 561 if expr is None: ERRORS.append(name) | |
| 562 | |
| 563 return expr | |
| 564 | |
| 565 def ras_op_list(op_list: ruleUtils.OpList, dataset: Dict[str, Expr]) -> Ras: | |
| 566 """ | |
| 567 Computes recursively the RAS (Reaction Activity Score) value for the given OpList, considering the specified flag to control None behavior. | |
| 568 | |
| 569 Args: | |
| 570 op_list (OpList): The OpList representing a rule with gene values. | |
| 571 dataset : gene expression data of one cell line. | |
| 572 | |
| 573 Returns: | |
| 574 Ras: The computed RAS value for the given OpList. | |
| 575 """ | |
| 576 op = op_list.op | |
| 577 ras_value :Ras = None | |
| 578 if not op: return get_gene_expr(dataset, op_list[0]) | |
| 579 if op is ruleUtils.RuleOp.AND and not ARGS.none and None in op_list: return None | |
| 580 | |
| 581 for i in range(len(op_list)): | |
| 582 item = op_list[i] | |
| 583 if isinstance(item, ruleUtils.OpList): | |
| 584 item = ras_op_list(item, dataset) | |
| 585 | |
| 586 else: | |
| 587 item = get_gene_expr(dataset, item) | |
| 588 | |
| 589 if item is None: | |
| 590 if op is ruleUtils.RuleOp.AND and not ARGS.none: return None | |
| 591 continue | |
| 592 | |
| 593 if ras_value is None: | |
| 594 ras_value = item | |
| 595 else: | |
| 596 ras_value = ras_value + item if op is ruleUtils.RuleOp.OR else min(ras_value, item) | |
| 597 | |
| 598 return ras_value | |
| 599 | |
| 600 def save_as_tsv(rasScores: Dict[str, Dict[str, Ras]], reactions :List[str]) -> None: | |
| 601 """ | |
| 602 Save computed ras scores to the given path, as a tsv file. | |
| 603 | |
| 604 Args: | |
| 605 rasScores : the computed ras scores. | |
| 606 path : the output tsv file's path. | |
| 607 | |
| 608 Returns: | |
| 609 None | |
| 610 """ | |
| 611 for scores in rasScores.values(): # this is actually a lot faster than using the ootb dataframe metod, sadly | |
| 612 for reactId, score in scores.items(): | |
| 613 if score is None: scores[reactId] = "None" | |
| 614 | |
| 615 output_ras = pd.DataFrame.from_dict(rasScores) | |
| 616 output_ras.insert(0, 'Reactions', reactions) | |
| 617 output_ras.to_csv(ARGS.ras_output, sep = '\t', index = False) | |
| 618 | |
| 619 ############################ MAIN ############################################# | |
| 620 #TODO: not used but keep, it will be when the new translator dicts will be used. | |
| 621 def translateGene(geneName :str, encoding :str, geneTranslator :Dict[str, Dict[str, str]]) -> str: | |
| 622 """ | |
| 623 Translate gene from any supported encoding to HugoID. | |
| 624 | |
| 625 Args: | |
| 626 geneName (str): the name of the gene in its current encoding. | |
| 627 encoding (str): the encoding. | |
| 628 geneTranslator (Dict[str, Dict[str, str]]): the dict containing all supported gene names | |
| 629 and encodings in the current model, mapping each to the corresponding HugoID encoding. | |
| 630 | |
| 631 Raises: | |
| 632 ValueError: When the gene isn't supported in the model. | |
| 633 | |
| 634 Returns: | |
| 635 str: the gene in HugoID encoding. | |
| 636 """ | |
| 637 supportedGenesInEncoding = geneTranslator[encoding] | |
| 638 if geneName in supportedGenesInEncoding: return supportedGenesInEncoding[geneName] | |
| 639 raise ValueError(f"Gene \"{geneName}\" non trovato, verifica di star utilizzando il modello corretto!") | |
| 640 | |
| 641 def load_custom_rules() -> Dict[str, ruleUtils.OpList]: | |
| 642 """ | |
| 643 Opens custom rules file and extracts the rules. If the file is in .csv format an additional parsing step will be | |
| 644 performed, significantly impacting the runtime. | |
| 645 | |
| 646 Returns: | |
| 647 Dict[str, ruleUtils.OpList] : dict mapping reaction IDs to rules. | |
| 648 """ | |
| 649 datFilePath = utils.FilePath.fromStrPath(ARGS.rule_list) # actual file, stored in galaxy as a .dat | |
| 650 | |
| 651 try: filenamePath = utils.FilePath.fromStrPath(ARGS.rules_name) # file's name in input, to determine its original ext | |
| 652 except utils.PathErr as err: | |
| 653 raise utils.PathErr(filenamePath, f"Please make sure your file's name is a valid file path, {err.msg}") | |
| 654 | |
| 655 if filenamePath.ext is utils.FileFormat.PICKLE: return utils.readPickle(datFilePath) | |
| 656 | |
| 657 # csv rules need to be parsed, those in a pickle format are taken to be pre-parsed. | |
| 658 return { line[0] : ruleUtils.parseRuleToNestedList(line[1]) for line in utils.readCsv(datFilePath) } | |
| 659 | |
| 660 def main(args:List[str] = None) -> None: | |
| 661 """ | |
| 662 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 663 | |
| 664 Returns: | |
| 665 None | |
| 666 """ | |
| 667 # get args from frontend (related xml) | |
| 668 global ARGS | |
| 669 ARGS = process_args(args) | |
| 670 print(ARGS.rules_selector) | |
| 671 # read dataset | |
| 672 dataset = read_dataset(ARGS.input, "dataset") | |
| 673 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | |
| 674 | |
| 675 # remove versioning from gene names | |
| 676 dataset.iloc[:, 0] = dataset.iloc[:, 0].str.split('.').str[0] | |
| 677 | |
| 678 # handle custom models | |
| 679 model :utils.Model = ARGS.rules_selector | |
| 680 if model is utils.Model.Custom: | |
| 681 rules = load_custom_rules() | |
| 682 reactions = list(rules.keys()) | |
| 683 | |
| 684 save_as_tsv(ras_for_cell_lines(dataset, rules), reactions) | |
| 685 if ERRORS: utils.logWarning( | |
| 686 f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}", | |
| 687 ARGS.out_log) | |
| 688 | |
| 689 return | |
| 690 | |
| 691 # This is the standard flow of the ras_generator program, for non-custom models. | |
| 692 name = "RAS Dataset" | |
| 693 type_gene = gene_type(dataset.iloc[0, 0], name) | |
| 694 | |
| 695 rules = model.getRules(ARGS.tool_dir) | |
| 696 genes = data_gene(dataset, type_gene, name, None) | |
| 697 ids, rules = load_id_rules(rules.get(type_gene)) | |
| 698 | |
| 699 resolve_rules, err = resolve(genes, rules, ids, ARGS.none, name) | |
| 700 create_ras(resolve_rules, name, rules, ids, ARGS.ras_output) | |
| 701 | |
| 702 if err: utils.logWarning( | |
| 703 f"Warning: gene(s) {err} not found in class \"{name}\", " + | |
| 704 "the expression level for this gene will be considered NaN", | |
| 705 ARGS.out_log) | |
| 706 | |
| 707 print("Execution succeded") | |
| 708 | |
| 709 ############################################################################### | |
| 710 if __name__ == "__main__": | |
| 711 main() |
