comparison COBRAxy/metabolic_model_setting.py @ 491:7a413a5ec566 draft default tip

Uploaded
author francesco_lapi
date Mon, 29 Sep 2025 15:34:59 +0000
parents c6ea189ea7e9
children
comparison
equal deleted inserted replaced
490:c6ea189ea7e9 491:7a413a5ec566
1 """
2 Scripts to generate a tabular file of a metabolic model (built-in or custom).
3
4 This script loads a COBRA model (built-in or custom), optionally applies
5 medium and gene nomenclature settings, derives reaction-related metadata
6 (GPR rules, formulas, bounds, objective coefficients, medium membership,
7 and compartments for ENGRO2), and writes a tabular summary.
8 """
9
10 import os
11 import csv
12 import cobra
13 import argparse
14 import pandas as pd
15 import utils.general_utils as utils
16 from typing import Optional, Tuple, List
17 import utils.model_utils as modelUtils
18 import logging
19 from pathlib import Path
20
21
22 ARGS : argparse.Namespace
23 def process_args(args: List[str] = None) -> argparse.Namespace:
24 """
25 Parse command-line arguments for metabolic_model_setting.
26 """
27
28 parser = argparse.ArgumentParser(
29 usage="%(prog)s [options]",
30 description="Generate custom data from a given model"
31 )
32
33 parser.add_argument("--out_log", type=str, required=True,
34 help="Output log file")
35
36 parser.add_argument("--model", type=str,
37 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
38 parser.add_argument("--input", type=str,
39 help="Custom model file (JSON or XML)")
40 parser.add_argument("--name", type=str, required=True,
41 help="Model name (default or custom)")
42
43 parser.add_argument("--medium_selector", type=str, required=True,
44 help="Medium selection option")
45
46 parser.add_argument("--gene_format", type=str, default="Default",
47 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
48
49 parser.add_argument("--out_tabular", type=str,
50 help="Output file for the merged dataset (CSV or XLSX)")
51
52 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
53 help="Tool directory (passed from Galaxy as $__tool_directory__)")
54
55
56 return parser.parse_args(args)
57
58 ################################- INPUT DATA LOADING -################################
59 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
60 """
61 Loads a custom model from a file, either in JSON, XML, MAT, or YML format.
62
63 Args:
64 file_path : The path to the file containing the custom model.
65 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
66
67 Raises:
68 DataErr : if the file is in an invalid format or cannot be opened for whatever reason.
69
70 Returns:
71 cobra.Model : the model, if successfully opened.
72 """
73 ext = ext if ext else file_path.ext
74 try:
75 if ext is utils.FileFormat.XML:
76 return cobra.io.read_sbml_model(file_path.show())
77
78 if ext is utils.FileFormat.JSON:
79 return cobra.io.load_json_model(file_path.show())
80
81 if ext is utils.FileFormat.MAT:
82 return cobra.io.load_matlab_model(file_path.show())
83
84 if ext is utils.FileFormat.YML:
85 return cobra.io.load_yaml_model(file_path.show())
86
87 except Exception as e: raise utils.DataErr(file_path, e.__str__())
88 raise utils.DataErr(
89 file_path,
90 f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported."
91 )
92
93
94 ###############################- FILE SAVING -################################
95 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
96 """
97 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
98
99 Args:
100 data : the data to be written to the file.
101 file_path : the path to the .csv file.
102 fieldNames : the names of the fields (columns) in the .csv file.
103
104 Returns:
105 None
106 """
107 with open(file_path.show(), 'w', newline='') as csvfile:
108 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
109 writer.writeheader()
110
111 for key, value in data.items():
112 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
113
114 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
115 """
116 Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
117
118 Args:
119 data : the data to be written to the file.
120 file_path : the path to the .csv file.
121 fieldNames : the names of the fields (columns) in the .csv file.
122
123 Returns:
124 None
125 """
126 with open(file_path, 'w', newline='') as csvfile:
127 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
128 writer.writeheader()
129
130 for key, value in data.items():
131 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
132
133 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
134 """
135 Save a pandas DataFrame as a tab-separated file, creating directories as needed.
136
137 Args:
138 df: The DataFrame to write.
139 path: Destination file path (will be written as TSV).
140
141 Raises:
142 DataErr: If writing the output fails for any reason.
143
144 Returns:
145 None
146 """
147 try:
148 os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
149 df.to_csv(path, sep="\t", index=False)
150 except Exception as e:
151 raise utils.DataErr(path, f"failed writing tabular output: {e}")
152
153 def is_placeholder(gid) -> bool:
154 """Return True if the gene id looks like a placeholder (e.g., 0/NA/NAN/empty)."""
155 if gid is None:
156 return True
157 s = str(gid).strip().lower()
158 return s in {"0", "", "na", "nan"} # lowercase for simple matching
159
160 def sample_valid_gene_ids(genes, limit=10):
161 """Yield up to `limit` valid gene IDs, skipping placeholders (e.g., the first 0 in RECON)."""
162 out = []
163 for g in genes:
164 gid = getattr(g, "id", getattr(g, "gene_id", g))
165 if not is_placeholder(gid):
166 out.append(str(gid))
167 if len(out) >= limit:
168 break
169 return out
170
171
172 ###############################- ENTRY POINT -################################
173 def main(args:List[str] = None) -> None:
174 """
175 Initialize and generate custom data based on the frontend input arguments.
176
177 Returns:
178 None
179 """
180 # Parse args from frontend (Galaxy XML)
181 global ARGS
182 ARGS = process_args(args)
183
184
185 if ARGS.input:
186 # Load a custom model from file
187 model = load_custom_model(
188 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
189 else:
190 # Load a built-in model
191
192 try:
193 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2']
194 except KeyError:
195 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
196
197 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
198 try:
199 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
200 except Exception as e:
201 # Wrap/normalize load errors as DataErr for consistency
202 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
203
204 # Determine final model name: explicit --name overrides, otherwise use the model id
205
206 model_name = ARGS.name if ARGS.name else ARGS.model
207
208 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
209 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
210 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
211 medium = df_mediums[[ARGS.medium_selector]]
212 medium = medium[ARGS.medium_selector].to_dict()
213
214 # Reset all medium reactions lower bound to zero
215 for rxn_id, _ in model.medium.items():
216 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
217
218 # Apply selected medium uptake bounds (negative for uptake)
219 for reaction, value in medium.items():
220 if value is not None:
221 model.reactions.get_by_id(reaction).lower_bound = -float(value)
222
223 # Initialize translation_issues dictionary
224 translation_issues = {}
225
226 if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
227 logging.basicConfig(level=logging.INFO)
228 logger = logging.getLogger(__name__)
229
230 model, translation_issues = modelUtils.translate_model_genes(
231 model=model,
232 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
233 target_nomenclature=ARGS.gene_format,
234 source_nomenclature='HGNC_symbol',
235 logger=logger
236 )
237
238 if ARGS.name == "Custom_model" and ARGS.gene_format != "Default":
239 logging.basicConfig(level=logging.INFO)
240 logger = logging.getLogger(__name__)
241
242 tmp_check = []
243 for g in model.genes[1:5]: # check first 3 genes only
244 tmp_check.append(modelUtils.gene_type(g.id, "Custom_model"))
245
246 if len(set(tmp_check)) > 1:
247 raise utils.DataErr("Custom_model", "The custom model contains genes with mixed or unrecognized nomenclature. Please ensure all genes use the same recognized nomenclature before applying gene_format conversion.")
248 else:
249 source_nomenclature = tmp_check[0]
250
251 if source_nomenclature != ARGS.gene_format:
252 model, translation_issues = modelUtils.translate_model_genes(
253 model=model,
254 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
255 target_nomenclature=ARGS.gene_format,
256 source_nomenclature=source_nomenclature,
257 logger=logger
258 )
259
260
261
262
263 if ARGS.name == "Custom_model" and ARGS.gene_format != "Default":
264 logger = logging.getLogger(__name__)
265
266 # Take a small, clean sample of gene IDs (skipping placeholders like 0)
267 ids_sample = sample_valid_gene_ids(model.genes, limit=10)
268 if not ids_sample:
269 raise utils.DataErr(
270 "Custom_model",
271 "No valid gene IDs found (many may be placeholders like 0)."
272 )
273
274 # Detect source nomenclature on the sample
275 types = []
276 for gid in ids_sample:
277 try:
278 t = modelUtils.gene_type(gid, "Custom_model")
279 except Exception as e:
280 # Keep it simple: skip problematic IDs
281 logger.debug(f"gene_type failed for {gid}: {e}")
282 t = None
283 if t:
284 types.append(t)
285
286 if not types:
287 raise utils.DataErr(
288 "Custom_model",
289 "Could not detect a known gene nomenclature from the sample."
290 )
291
292 unique_types = set(types)
293 if len(unique_types) > 1:
294 raise utils.DataErr(
295 "Custom_model",
296 "Mixed or inconsistent gene nomenclatures detected. "
297 "Please unify them before converting."
298 )
299
300 source_nomenclature = types[0]
301
302 # Convert only if needed
303 if source_nomenclature != ARGS.gene_format:
304 model, translation_issues = modelUtils.translate_model_genes(
305 model=model,
306 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
307 target_nomenclature=ARGS.gene_format,
308 source_nomenclature=source_nomenclature,
309 logger=logger
310 )
311
312 # generate data
313 rules = modelUtils.generate_rules(model, asParsed = False)
314 reactions = modelUtils.generate_reactions(model, asParsed = False)
315 bounds = modelUtils.generate_bounds(model)
316 medium = modelUtils.get_medium(model)
317 objective_function = modelUtils.extract_objective_coefficients(model)
318
319 if ARGS.name == "ENGRO2":
320 compartments = modelUtils.generate_compartments(model)
321
322 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "GPR"])
323 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Formula"])
324
325 # Create DataFrame for translation issues
326 df_translation_issues = pd.DataFrame([
327 {"ReactionID": rxn_id, "TranslationIssues": issues}
328 for rxn_id, issues in translation_issues.items()
329 ])
330
331 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
332 df_medium = medium.rename(columns = {"reaction": "ReactionID"})
333 df_medium["InMedium"] = True
334
335 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
336 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
337 merged = merged.merge(objective_function, on = "ReactionID", how = "outer")
338 if ARGS.name == "ENGRO2":
339 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
340 merged = merged.merge(df_medium, on = "ReactionID", how = "left")
341
342 # Add translation issues column
343 if not df_translation_issues.empty:
344 merged = merged.merge(df_translation_issues, on = "ReactionID", how = "left")
345 merged["TranslationIssues"] = merged["TranslationIssues"].fillna("")
346 else:
347 # Add empty TranslationIssues column if no issues found
348 #merged["TranslationIssues"] = ""
349 pass
350
351 merged["InMedium"] = merged["InMedium"].fillna(False)
352
353 merged = merged.sort_values(by = "InMedium", ascending = False)
354
355 if not ARGS.out_tabular:
356 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
357 save_as_tabular_df(merged, ARGS.out_tabular)
358 expected = ARGS.out_tabular
359
360 # verify output exists and non-empty
361 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
362 raise utils.DataErr(expected, "Output not created or empty")
363
364 print("Metabolic_model_setting: completed successfully")
365
366 if __name__ == '__main__':
367
368 main()