Mercurial > repos > bimib > cobraxy
diff COBRAxy/ras_to_bounds.py @ 102:182c710c1660 draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 13:23:12 +0000 |
parents | 54ded7f28a60 |
children | d1370b6bb4c5 |
line wrap: on
line diff
--- a/COBRAxy/ras_to_bounds.py Sun Oct 13 12:00:59 2024 +0000 +++ b/COBRAxy/ras_to_bounds.py Sun Oct 13 13:23:12 2024 +0000 @@ -128,7 +128,6 @@ scaling_factor = ras_row[reaction] lower_bound=model.reactions.get_by_id(reaction).lower_bound upper_bound=model.reactions.get_by_id(reaction).upper_bound - #warning("Reaction: "+reaction+" Lower Bound: "+str(lower_bound)+" Upper Bound: "+str(upper_bound)+" Scaling Factor: "+str(scaling_factor)) valMax=float((upper_bound)*scaling_factor) valMin=float((lower_bound)*scaling_factor) if upper_bound!=0 and lower_bound==0: @@ -176,6 +175,14 @@ rxns_ids = [rxn.id for rxn in model.reactions] # Set medium conditions + ''' + reactions_medium=model2.medium.keys() + for reaction in reactions_medium: + if(reaction != "EX_thbpt_e" and reaction != "EX_lac__L_e"): + model2.reactions.get_by_id(reaction).lower_bound=-float(ras_meta.loc[cell,"countmatrix_"+reaction]) + if(reaction == "EX_lac__L_e"): + model2.reactions.get_by_id(reaction).lower_bound=float(0.0) + ''' for reaction, value in medium.items(): if value is not None: model.reactions.get_by_id(reaction).lower_bound = -float(value) @@ -185,14 +192,11 @@ # Set FVA bounds for reaction in rxns_ids: - rxn = model.reactions.get_by_id(reaction) - rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) - rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) + model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) + model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) if ras is not None: Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) - #for cellName, ras_row in ras.iterrows(): - #process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder) else: model_new = model.copy() apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids)