Mercurial > repos > bimib > cobraxy
diff COBRAxy/marea.py @ 151:8e3cbf68cdc4 draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 06 Nov 2024 21:02:00 +0000 |
parents | 3fca9b568faf |
children |
line wrap: on
line diff
--- a/COBRAxy/marea.py Wed Nov 06 21:00:17 2024 +0000 +++ b/COBRAxy/marea.py Wed Nov 06 21:02:00 2024 +0000 @@ -768,13 +768,12 @@ return tmp, max_z_score -def computeEnrichment(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> List[Tuple[str, str, dict, float]]: +def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> List[Tuple[str, str, dict, float]]: """ Compares clustered data based on a given comparison mode and applies enrichment-based styling on the provided metabolic map. Args: - metabMap : SVG map to modify. class_pat : the clustered data. ids : ids for data association. fromRAS : whether the data to enrich consists of RAS scores. @@ -784,9 +783,6 @@ Raises: sys.exit : if there are less than 2 classes for comparison - - Side effects: - metabMap : mutates based on calculated enrichment """ class_pat = {k.strip(): v for k, v in class_pat.items()} if (not class_pat) or (len(class_pat.keys()) < 2): @@ -893,7 +889,7 @@ if ARGS.using_RAS: ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) - enrichment_results = computeEnrichment(core_map, class_pat, ids) + enrichment_results = computeEnrichment(class_pat, ids) for i, j, comparisonDict, max_z_score in enrichment_results: map_copy = copy.deepcopy(core_map) temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j, ras_enrichment=True) @@ -901,7 +897,7 @@ if ARGS.using_RPS: ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) - enrichment_results = computeEnrichment(core_map, class_pat, ids, fromRAS=False) + enrichment_results = computeEnrichment(class_pat, ids, fromRAS=False) for i, j, comparisonDict, max_z_score in enrichment_results: map_copy = copy.deepcopy(core_map) temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j, ras_enrichment=False)