Mercurial > repos > bimib > cobraxy
diff COBRAxy/ras_to_bounds.py @ 48:fac6930e6385 draft
Uploaded
author | luca_milaz |
---|---|
date | Sat, 12 Oct 2024 19:57:09 +0000 |
parents | 41f35c2f0c7b |
children | 47153fe3d59e |
line wrap: on
line diff
--- a/COBRAxy/ras_to_bounds.py Tue Oct 08 17:08:02 2024 +0000 +++ b/COBRAxy/ras_to_bounds.py Sat Oct 12 19:57:09 2024 +0000 @@ -59,6 +59,14 @@ type=utils.Bool("using_RAS"), help = 'ras selector') + parser.add_argument('-c', '--classes', + type = str, + help = 'input classes') + + parser.add_argument('-cc', '--cell_class', + type = str, + help = 'output of cell class') + ARGS = parser.parse_args() return ARGS @@ -115,11 +123,20 @@ None """ for reaction in rxns_ids: - if reaction in ras_row.index and pd.notna(ras_row[reaction]): - rxn = model.reactions.get_by_id(reaction) + if reaction in ras_row.index: scaling_factor = ras_row[reaction] - rxn.lower_bound *= scaling_factor - rxn.upper_bound *= scaling_factor + lower_bound=model.reactions.get_by_id(reaction).lower_bound + upper_bound=model.reactions.get_by_id(reaction).upper_bound + valMax=float((upper_bound)*scaling_factor) + valMin=float((lower_bound)*scaling_factor) + if upper_bound!=0 and lower_bound==0: + model.reactions.get_by_id(reaction).upper_bound=valMax + if upper_bound==0 and lower_bound!=0: + model.reactions.get_by_id(reaction).lower_bound=valMin + if upper_bound!=0 and lower_bound!=0: + model.reactions.get_by_id(reaction).lower_bound=valMin + model.reactions.get_by_id(reaction).upper_bound=valMax + pass def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): """ @@ -139,6 +156,7 @@ apply_ras_bounds(model_new, ras_row, rxns_ids) bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) + pass def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: """ @@ -147,7 +165,7 @@ Args: model (cobra.Model): The metabolic model for which bounds will be generated. medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. - ras (pd.DataFrame, optional): A DataFrame with RAS scaling factors for different cell types. Defaults to None. + ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. Returns: @@ -176,6 +194,8 @@ apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) + pass + ############################# main ########################################### @@ -196,11 +216,30 @@ ARGS.output_folder = 'ras_to_bounds/' if(ARGS.ras_selector == True): - ras = read_dataset(ARGS.input_ras, "ras dataset") - ras.replace("None", None, inplace=True) - ras.set_index("Reactions", drop=True, inplace=True) - ras = ras.T - ras = ras.astype(float) + ras_file_list = ARGS.ras_selector.split(",") + if(len(ras_list)>1): + ras_class_names = [cls.strip() for cls in ARGS.classes.split(',')] + else: + ras_class_names = ["placeHolder"] + ras_list = [] + class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) + for ras_matrix, ras_class_name in ras_file_list, ras_class_names: + ras = read_dataset(ras_matrix, "ras dataset") + ras.replace("None", None, inplace=True) + ras.set_index("Reactions", drop=True, inplace=True) + ras = ras.T + ras = ras.astype(float) + ras_list.append(ras) + for patient_id in ras.index: + class_assignments = class_assignments.append({"Patient_ID": patient_id, "Class": ras_class_name}, ignore_index=True) + + # Concatenate all ras DataFrames into a single DataFrame + ras_combined = pd.concat(ras_list, axis=1) + # Normalize the RAS values by max RAS + ras_combined = ras_combined.div(ras_combined.max(axis=0)) + ras_combined = ras_combined.fillna(0) + + model_type :utils.Model = ARGS.model_selector if model_type is utils.Model.Custom: @@ -220,7 +259,9 @@ medium = medium[ARGS.medium_selector].to_dict() if(ARGS.ras_selector == True): - generate_bounds(model, medium, ras = ras, output_folder=ARGS.output_folder) + generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) + if(len(ras_list)>1): + class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) else: generate_bounds(model, medium, output_folder=ARGS.output_folder)