Mercurial > repos > bimib > cobraxy
diff COBRAxy/src/marea.py @ 542:fcdbc81feb45 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Sun, 26 Oct 2025 19:27:41 +0000 |
| parents | 2fb97466e404 |
| children |
line wrap: on
line diff
--- a/COBRAxy/src/marea.py Sat Oct 25 15:20:55 2025 +0000 +++ b/COBRAxy/src/marea.py Sun Oct 26 19:27:41 2025 +0000 @@ -1,1052 +1,1055 @@ -""" -MAREA: Enrichment and map styling for RAS/RPS data. - -This module compares groups of samples using RAS (Reaction Activity Scores) and/or -RPS (Reaction Propensity Scores), computes statistics (p-values, z-scores, fold change), -and applies visual styling to an SVG metabolic map (with optional PDF/PNG export). -""" -from __future__ import division -import csv -from enum import Enum -import re -import sys -import numpy as np -import pandas as pd -import itertools as it -import scipy.stats as st -import lxml.etree as ET -import math -import utils.general_utils as utils -from PIL import Image -import os -import argparse -import pyvips -from typing import Tuple, Union, Optional, List, Dict -import copy - -from pydeseq2.dds import DeseqDataSet -from pydeseq2.default_inference import DefaultInference -from pydeseq2.ds import DeseqStats - -ERRORS = [] -########################## argparse ########################################## -ARGS :argparse.Namespace -def process_args(args:List[str] = None) -> argparse.Namespace: - """ - Parse command-line arguments exposed by the Galaxy frontend for this module. - - Args: - args: Optional list of arguments, defaults to sys.argv when None. - - Returns: - Namespace: Parsed arguments. - """ - parser = argparse.ArgumentParser( - usage = "%(prog)s [options]", - description = "process some value's genes to create a comparison's map.") - - #General: - parser.add_argument( - '-td', '--tool_dir', - type = str, - required = True, - help = 'your tool directory') - - parser.add_argument('-on', '--control', type = str) - parser.add_argument('-ol', '--out_log', help = "Output log") - - #Computation details: - parser.add_argument( - '-co', '--comparison', - type = str, - default = 'manyvsmany', - choices = ['manyvsmany', 'onevsrest', 'onevsmany']) - - parser.add_argument( - '-te' ,'--test', - type = str, - default = 'ks', - choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw', 'DESeq'], - help = 'Statistical test to use (default: %(default)s)') - - parser.add_argument( - '-pv' ,'--pValue', - type = float, - default = 0.1, - help = 'P-Value threshold (default: %(default)s)') - - parser.add_argument( - '-adj' ,'--adjusted', - type = utils.Bool("adjusted"), default = False, - help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)') - - parser.add_argument( - '-fc', '--fChange', - type = float, - default = 1.5, - help = 'Fold-Change threshold (default: %(default)s)') - - parser.add_argument( - "-ne", "--net", - type = utils.Bool("net"), default = False, - help = "choose if you want net enrichment for RPS") - - parser.add_argument( - '-op', '--option', - type = str, - choices = ['datasets', 'dataset_class'], - help='dataset or dataset and class') - - #RAS: - parser.add_argument( - "-ra", "--using_RAS", - type = utils.Bool("using_RAS"), default = True, - help = "choose whether to use RAS datasets.") - - parser.add_argument( - '-id', '--input_data', - type = str, - help = 'input dataset') - - parser.add_argument( - '-ic', '--input_class', - type = str, - help = 'sample group specification') - - parser.add_argument( - '-ids', '--input_datas', - type = str, - nargs = '+', - help = 'input datasets') - - parser.add_argument( - '-na', '--names', - type = str, - nargs = '+', - help = 'input names') - - #RPS: - parser.add_argument( - "-rp", "--using_RPS", - type = utils.Bool("using_RPS"), default = False, - help = "choose whether to use RPS datasets.") - - parser.add_argument( - '-idr', '--input_data_rps', - type = str, - help = 'input dataset rps') - - parser.add_argument( - '-icr', '--input_class_rps', - type = str, - help = 'sample group specification rps') - - parser.add_argument( - '-idsr', '--input_datas_rps', - type = str, - nargs = '+', - help = 'input datasets rps') - - parser.add_argument( - '-nar', '--names_rps', - type = str, - nargs = '+', - help = 'input names rps') - - #Output: - parser.add_argument( - "-gs", "--generate_svg", - type = utils.Bool("generate_svg"), default = True, - help = "choose whether to use RAS datasets.") - - parser.add_argument( - "-gp", "--generate_pdf", - type = utils.Bool("generate_pdf"), default = True, - help = "choose whether to use RAS datasets.") - - parser.add_argument( - '-cm', '--custom_map', - type = str, - help='custom map to use') - - parser.add_argument( - '-idop', '--output_path', - type = str, - default='result', - help = 'output path for maps') - - parser.add_argument( - '-mc', '--choice_map', - type = utils.Model, default = utils.Model.HMRcore, - choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) - - args :argparse.Namespace = parser.parse_args(args) - if args.using_RAS and not args.using_RPS: args.net = False - - return args - -############################ dataset input #################################### -def read_dataset(data :str, name :str) -> pd.DataFrame: - """ - Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. - - Args: - data : filepath of a dataset (from frontend input params or literals upon calling) - name : name associated with the dataset (from frontend input params or literals upon calling) - - Returns: - pd.DataFrame : dataset in a runtime operable shape - - Raises: - sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns - """ - try: - dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') - except pd.errors.EmptyDataError: - sys.exit('Execution aborted: wrong format of ' + name + '\n') - if len(dataset.columns) < 2: - sys.exit('Execution aborted: wrong format of ' + name + '\n') - return dataset - -############################ map_methods ###################################### -FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] -def fold_change(avg1 :float, avg2 :float) -> FoldChange: - """ - Calculates the fold change between two gene expression values. - - Args: - avg1 : average expression value from one dataset avg2 : average expression value from the other dataset - - Returns: - FoldChange : - 0 : when both input values are 0 - "-INF" : when avg1 is 0 - "INF" : when avg2 is 0 - float : for any other combination of values - """ - if avg1 == 0 and avg2 == 0: - return 0 - - if avg1 == 0: - return '-INF' # TODO: maybe fix - - if avg2 == 0: - return 'INF' - - # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 - return (avg1 - avg2) / (abs(avg1) + abs(avg2)) - -# TODO: I would really like for this one to get the Thanos treatment -def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: - """ - Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. - - Args: - l : current style string of an SVG element - col : new value for the "stroke" style property - width : new value for the "stroke-width" style property - dash : new value for the "stroke-dasharray" style property - - Returns: - str : the fixed style string - """ - tmp = l.split(';') - flag_col = False - flag_width = False - flag_dash = False - for i in range(len(tmp)): - if tmp[i].startswith('stroke:'): - tmp[i] = 'stroke:' + col - flag_col = True - if tmp[i].startswith('stroke-width:'): - tmp[i] = 'stroke-width:' + width - flag_width = True - if tmp[i].startswith('stroke-dasharray:'): - tmp[i] = 'stroke-dasharray:' + dash - flag_dash = True - if not flag_col: - tmp.append('stroke:' + col) - if not flag_width: - tmp.append('stroke-width:' + width) - if not flag_dash: - tmp.append('stroke-dasharray:' + dash) - return ';'.join(tmp) - -def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: - """ - Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. - - Args: - d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) - core_map : SVG map to modify - threshold_P_V : threshold for a p-value to be considered significant - threshold_F_C : threshold for a fold change value to be considered significant - max_z_score : highest z-score (absolute value) - - Returns: - ET.ElementTree : the modified core_map - - Side effects: - core_map : mut - """ - maxT = 12 - minT = 2 - grey = '#BEBEBE' - blue = '#6495ed' - red = '#ecac68' - for el in core_map.iter(): - el_id = str(el.get('id')) - if el_id.startswith('R_'): - tmp = d.get(el_id[2:]) - if tmp != None: - p_val, f_c, z_score, avg1, avg2 = tmp - - if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue - - if p_val <= threshold_P_V: # p-value is OK - if not isinstance(f_c, str): # FC is finite - if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # FC is not OK - col = grey - width = str(minT) - else: # FC is OK - if f_c < 0: - col = blue - elif f_c > 0: - col = red - width = str( - min( - max(abs(z_score * maxT) / max_z_score, minT), - maxT)) - - else: # FC is infinite - if f_c == '-INF': - col = blue - elif f_c == 'INF': - col = red - width = str(maxT) - dash = 'none' - else: # p-value is not OK - dash = '5,5' - col = grey - width = str(minT) - el.set('style', fix_style(el.get('style', ""), col, width, dash)) - return core_map - -def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: - """ - Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but - not enforced, if more than one element with the exact ID is found only the first will be returned. - - Args: - reactionId (str): exact ID of the requested element. - metabMap (ET.ElementTree): metabolic map containing the element. - - Returns: - utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. - """ - return utils.Result.Ok( - f"//*[@id=\"{reactionId}\"]").map( - lambda xPath : metabMap.xpath(xPath)[0]).mapErr( - lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) - -def styleMapElement(element :ET.Element, styleStr :str) -> None: - """Append/override stroke-related styles on a given SVG element.""" - currentStyles :str = element.get("style", "") - if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): - currentStyles = ';'.join(currentStyles.split(';')[:-3]) - - element.set("style", currentStyles + styleStr) - -class ReactionDirection(Enum): - Unknown = "" - Direct = "_F" - Inverse = "_B" - - @classmethod - def fromDir(cls, s :str) -> "ReactionDirection": - # vvv as long as there's so few variants I actually condone the if spam: - if s == ReactionDirection.Direct.value: return ReactionDirection.Direct - if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse - return ReactionDirection.Unknown - - @classmethod - def fromReactionId(cls, reactionId :str) -> "ReactionDirection": - return ReactionDirection.fromDir(reactionId[-2:]) - -def getArrowBodyElementId(reactionId :str) -> str: - """Return the SVG element id for a reaction arrow body, normalizing direction tags.""" - if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV - elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] - return f"R_{reactionId}" - -def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: - """ - We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. - - Args: - reactionId : the provided reaction ID. - - Returns: - Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. - """ - if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV - elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: - return reactionId[:-3:-1] + reactionId[:-2], "" # ^^^ Invert _F to F_ - - return f"F_{reactionId}", f"B_{reactionId}" - -class ArrowColor(Enum): - """ - Encodes possible arrow colors based on their meaning in the enrichment process. - """ - Invalid = "#BEBEBE" # gray, fold-change under treshold or not significant p-value - Transparent = "#ffffff00" # transparent, to make some arrow segments disappear - UpRegulated = "#ecac68" # orange, up-regulated reaction - DownRegulated = "#6495ed" # lightblue, down-regulated reaction - - UpRegulatedInv = "#FF0000" # bright red for reversible with conflicting directions - - DownRegulatedInv = "#0000FF" # bright blue for reversible with conflicting directions - - @classmethod - def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": - colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) - return colors[useAltColor] - - def __str__(self) -> str: return self.value - -class Arrow: - """ - Models the properties of a reaction arrow that change based on enrichment. - """ - MIN_W = 2 - MAX_W = 12 - - def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: - """ - (Private) Initializes an instance of Arrow. - - Args: - width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). - col : color of the arrow. - isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. - - Returns: - None : practically, a Arrow instance. - """ - self.w = width - self.col = col - self.dash = isDashed - - def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: - if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: - ERRORS.append(reactionId) - - def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: - # If direction is irrelevant (e.g., RAS), style only the arrow body - if not mindReactionDir: - return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) - - # Now we style the arrow head(s): - idOpt1, idOpt2 = getArrowHeadElementId(reactionId) - self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) - if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) - - def toStyleStr(self, *, downSizedForTips = False) -> str: - """ - Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. - - Returns: - str : the styles string. - """ - width = self.w - if downSizedForTips: width *= 0.8 - return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" - -# Default arrows used for different significance states -INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) -INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) -TRANSPARENT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Transparent) # Who cares how big it is if it's transparent - -def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: - """ - Applies RPS enrichment results to the provided metabolic map. - - Args: - rpsEnrichmentRes : RPS enrichment results. - metabMap : the metabolic map to edit. - maxNumericZScore : biggest finite z-score value found. - - Side effects: - metabMap : mut - - Returns: - None - """ - for reactionId, values in rpsEnrichmentRes.items(): - pValue = values[0] - foldChange = values[1] - z_score = values[2] - - if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): continue - - if isinstance(foldChange, str): foldChange = float(foldChange) - if pValue > ARGS.pValue: # pValue above tresh: dashed arrow - INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) - continue - - if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): - INVALID_ARROW.styleReactionElements(metabMap, reactionId) - continue - - width = Arrow.MAX_W - if not math.isinf(z_score): - try: width = min( - max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), - Arrow.MAX_W) - - except ZeroDivisionError: pass - - if not reactionId.endswith("_RV"): # RV stands for reversible reactions - Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) - continue - - reactionId = reactionId[:-3] # Remove "_RV" - - inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score - if inversionScore == 2: foldChange *= -1 - - # If the score is 1 (opposite signs) we use alternative colors vvv - arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) - - # vvv These 2 if statements can both be true and can both happen - if ARGS.net: # style arrow head(s): - arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) - - if not ARGS.using_RAS: # style arrow body - arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) - -############################ split class ###################################### -def split_class(classes :pd.DataFrame, dataset_values :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: - """ - Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. - - Args: - classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict - dataset_values : a :dict containing :float data - - Returns: - dict : the dict with data grouped by class - - Side effects: - classes : mut - """ - class_pat :Dict[str, List[List[float]]] = {} - for i in range(len(classes)): - classe :str = classes.iloc[i, 1] - if pd.isnull(classe): continue - - l :List[List[float]] = [] - sample_ids: List[str] = [] - - for j in range(i, len(classes)): - if classes.iloc[j, 1] == classe: - pat_id :str = classes.iloc[j, 0] # sample name - values = dataset_values.get(pat_id, None) # the column of values for that sample - if values != None: - l.append(values) - sample_ids.append(pat_id) - classes.iloc[j, 1] = None # TODO: problems? - - if l: - class_pat[classe] = { - "values": list(map(list, zip(*l))), # transpose - "samples": sample_ids - } - continue - - utils.logWarning( - f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) - - return class_pat - -############################ conversion ############################################## -# Conversion from SVG to PNG -def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: - """ - Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. - - Args: - svg_path : path to SVG file - png_path : path for new PNG file - dpi : dots per inch of the generated PNG - scale : scaling factor for the generated PNG, computed internally when a size is provided - size : final effective width of the generated PNG - - Returns: - None - """ - if size: - image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) - scale = size / image.width - image = image.resize(scale) - else: - image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) - - white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) - white_background = white_background.affine([scale, 0, 0, scale]) - - if white_background.bands != image.bands: - white_background = white_background.extract_band(0) - - composite_image = white_background.composite2(image, 'over') - composite_image.write_to_file(png_path.show()) - -def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: - """ - Converts the SVG map at the provided path to PDF. - - Args: - file_svg : path to SVG file - file_png : path to PNG file - file_pdf : path to new PDF file - - Returns: - None - """ - svg_to_png_with_background(file_svg, file_png) - try: - image = Image.open(file_png.show()) - image = image.convert("RGB") - image.save(file_pdf.show(), "PDF", resolution=100.0) - print(f'PDF file {file_pdf.filePath} successfully generated.') - - except Exception as e: - raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') - -############################ map ############################################## -def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: - """ - Builds a FilePath instance from the names of confronted datasets ready to point to a location in the - "result/" folder, used by this tool for output files in collections. - - Args: - dataset1Name : _description_ - dataset2Name : _description_. Defaults to "rest". - details : _description_ - ext : _description_ - - Returns: - utils.FilePath : _description_ - """ - return utils.FilePath( - f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), - ext, - prefix = ARGS.output_path) - -FIELD_NOT_AVAILABLE = '/' -def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: - fieldsAmt = len(fieldNames) - with open(outPath.show(), "w", newline = "") as fd: - writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') - writer.writeheader() - - for row in rows: - sizeMismatch = fieldsAmt - len(row) - if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) - writer.writerow({ field : data for field, data in zip(fieldNames, row) }) - -OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] -def temp_thingsInCommon(tmp :OldEnrichedScores, core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: - suffix = "RAS" if ras_enrichment else "RPS" - writeToCsv( - [ [reactId] + values for reactId, values in tmp.items() ], - ["ids", "P_Value", "fold change", "z-score", "average_1", "average_2"], - buildOutputPath(dataset1Name, dataset2Name, details = f"Tabular Result ({suffix})", ext = utils.FileFormat.TSV)) - - if ras_enrichment: - fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) - return - - for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) - applyRpsEnrichmentToMap(tmp, core_map, max_z_score) - -def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: - """ - Computes the statistical significance score (P-value) of the comparison between coherent data - from two datasets. The data is supposed to, in both datasets: - - be related to the same reaction ID; - - be ordered by sample, such that the item at position i in both lists is related to the - same sample or cell line. - - Args: - dataset1Data : data from the 1st dataset. - dataset2Data : data from the 2nd dataset. - - Returns: - tuple: (P-value, Z-score) - - P-value from the selected test on the provided data. - - Z-score of the difference between means of the two datasets. - """ - match ARGS.test: - case "ks": - # Perform Kolmogorov-Smirnov test - _, p_value = st.ks_2samp(dataset1Data, dataset2Data) - case "ttest_p": - # Datasets should have same size - if len(dataset1Data) != len(dataset2Data): - raise ValueError("Datasets must have the same size for paired t-test.") - # Perform t-test for paired samples - _, p_value = st.ttest_rel(dataset1Data, dataset2Data) - case "ttest_ind": - # Perform t-test for independent samples - _, p_value = st.ttest_ind(dataset1Data, dataset2Data) - case "wilcoxon": - # Datasets should have same size - if len(dataset1Data) != len(dataset2Data): - raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.") - # Perform Wilcoxon signed-rank test - np.random.seed(42) # Ensure reproducibility since zsplit method is used - _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method='zsplit') - case "mw": - # Perform Mann-Whitney U test - _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) - case _: - p_value = np.nan # Default value if no valid test is selected - - # Calculate means and standard deviations - mean1 = np.mean(dataset1Data) - mean2 = np.mean(dataset2Data) - std1 = np.std(dataset1Data, ddof=1) - std2 = np.std(dataset2Data, ddof=1) - - n1 = len(dataset1Data) - n2 = len(dataset2Data) - - # Calculate Z-score - z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) - - return p_value, z_score - - -def DESeqPValue(comparisonResult :Dict[str, List[Union[float, FoldChange]]], dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> None: - """ - Computes the p-value for each reaction in the comparisonResult dictionary using DESeq2. - - Args: - comparisonResult : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) - dataset1Data : data from the 1st dataset. - dataset2Data : data from the 2nd dataset. - ids : list of reaction IDs. - - Returns: - None : mutates the comparisonResult dictionary in place with the p-values. - """ - - # pyDESeq2 needs at least 2 replicates per sample so I check this - if len(dataset1Data[0]) < 2 or len(dataset2Data[0]) < 2: - raise ValueError("Datasets must have at least 2 replicates each") - - # pyDESeq2 is based on pandas, so we need to convert the data into a DataFrame and clean it from NaN values - dataframe1 = pd.DataFrame(dataset1Data, index=ids) - dataframe2 = pd.DataFrame(dataset2Data, index=ids) - - # pyDESeq2 requires datasets to be samples x reactions and integer values - dataframe1_clean = dataframe1.dropna(axis=0, how="any").T.astype(int) - dataframe2_clean = dataframe2.dropna(axis=0, how="any").T.astype(int) - dataframe1_clean.index = [f"ds1_rep{i+1}" for i in range(dataframe1_clean.shape[0])] - dataframe2_clean.index = [f"ds2_rep{j+1}" for j in range(dataframe2_clean.shape[0])] - - # pyDESeq2 works on a DataFrame with values and another with infos about how samples are split (like dataset class) - dataframe = pd.concat([dataframe1_clean, dataframe2_clean], axis=0) - metadata = pd.DataFrame({"dataset": (["dataset1"]*dataframe1_clean.shape[0] + ["dataset2"]*dataframe2_clean.shape[0])}, index=dataframe.index) - - # Ensure the index of the metadata matches the index of the dataframe - if not dataframe.index.equals(metadata.index): - raise ValueError("The index of the metadata DataFrame must match the index of the counts DataFrame.") - - # Prepare and run pyDESeq2 - inference = DefaultInference() - dds = DeseqDataSet(counts=dataframe, metadata=metadata, design="~dataset", inference=inference, quiet=True, low_memory=True) - dds.deseq2() - ds = DeseqStats(dds, contrast=["dataset", "dataset1", "dataset2"], inference=inference, quiet=True) - ds.summary() - - # Retrieve the p-values from the DESeq2 results - for reactId in ds.results_df.index: - comparisonResult[reactId][0] = ds.results_df["pvalue"][reactId] - - -# TODO: the net RPS computation should be done in the RPS module -def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float, Dict[str, Tuple[np.ndarray, np.ndarray]]]: - - netRPS :Dict[str, Tuple[np.ndarray, np.ndarray]] = {} - comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {} - count = 0 - max_z_score = 0 - - for l1, l2 in zip(dataset1Data, dataset2Data): - reactId = ids[count] - count += 1 - if not reactId: continue - - try: #TODO: identify the source of these errors and minimize code in the try block - reactDir = ReactionDirection.fromReactionId(reactId) - # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used - if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: - try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) - except ValueError: continue # we look for the complementary id, if not found we skip - - nets1 = np.subtract(l1, dataset1Data[position]) - nets2 = np.subtract(l2, dataset2Data[position]) - netRPS[reactId] = (nets1, nets2) - - # Compute p-value and z-score for the RPS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 - p_value, z_score = computePValue(nets1, nets2) - avg1 = sum(nets1) / len(nets1) - avg2 = sum(nets2) / len(nets2) - net = fold_change(avg1, avg2) - - if math.isnan(net): continue - comparisonResult[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] - - # vvv complementary directional ids are set to None once processed if net is to be applied to tips - if ARGS.net: # If only using RPS, we cannot delete the inverse, as it's needed to color the arrows - ids[position] = None - continue - - # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used - # Compute p-value and z-score for the RAS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 - p_value, z_score = computePValue(l1, l2) - avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) - # vvv TODO: Check numpy version compatibility - if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) - comparisonResult[reactId] = [float(p_value), avg, z_score, sum(l1) / len(l1), sum(l2) / len(l2)] - - except (TypeError, ZeroDivisionError): continue - - if ARGS.test == "DESeq": - # Compute p-values using DESeq2 - DESeqPValue(comparisonResult, dataset1Data, dataset2Data, ids) - - # Apply multiple testing correction if set by the user - if ARGS.adjusted: - - # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN - validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])] - # Unpack the valid p-values - reactIds, pValues = zip(*validPValues) - # Adjust the p-values using the Benjamini-Hochberg method - adjustedPValues = st.false_discovery_control(pValues) - # Update the comparisonResult dictionary with the adjusted p-values - for reactId , adjustedPValue in zip(reactIds, adjustedPValues): - comparisonResult[reactId][0] = adjustedPValue - - return comparisonResult, max_z_score, netRPS - -def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> Tuple[List[Tuple[str, str, dict, float]], dict]: - """ - Compares clustered data based on a given comparison mode and applies enrichment-based styling on the - provided metabolic map. - - Args: - class_pat : the clustered data. - ids : ids for data association. - fromRAS : whether the data to enrich consists of RAS scores. - - Returns: - tuple: A tuple containing: - - List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary and max z-score. - - dict : net RPS values for each dataset's reactions - - Raises: - sys.exit : if there are less than 2 classes for comparison - """ - class_pat = {k.strip(): v for k, v in class_pat.items()} - if (not class_pat) or (len(class_pat.keys()) < 2): - sys.exit('Execution aborted: classes provided for comparisons are less than two\n') - - # { datasetName : { reactId : netRPS, ... }, ... } - netRPSResults :Dict[str, Dict[str, np.ndarray]] = {} - enrichment_results = [] - - if ARGS.comparison == "manyvsmany": - for i, j in it.combinations(class_pat.keys(), 2): - comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) - enrichment_results.append((i, j, comparisonDict, max_z_score)) - netRPSResults[i] = { reactId : net[0] for reactId, net in netRPS.items() } - netRPSResults[j] = { reactId : net[1] for reactId, net in netRPS.items() } - - elif ARGS.comparison == "onevsrest": - for single_cluster in class_pat.keys(): - rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] - comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(single_cluster), rest, ids) - enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) - netRPSResults[single_cluster] = { reactId : net[0] for reactId, net in netRPS.items() } - netRPSResults["rest"] = { reactId : net[1] for reactId, net in netRPS.items() } - - elif ARGS.comparison == "onevsmany": - controlItems = class_pat.get(ARGS.control) - for otherDataset in class_pat.keys(): - if otherDataset == ARGS.control: - continue - - #comparisonDict, max_z_score, netRPS = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) - comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids) - #enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) - enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score)) - netRPSResults[otherDataset] = { reactId : net[0] for reactId, net in netRPS.items() } - netRPSResults[ARGS.control] = { reactId : net[1] for reactId, net in netRPS.items() } - - return enrichment_results, netRPSResults - -def createOutputMaps(dataset1Name: str, dataset2Name: str, core_map: ET.ElementTree) -> None: - svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) - utils.writeSvg(svgFilePath, core_map) - - if ARGS.generate_pdf: - pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) - pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) - svg_to_png_with_background(svgFilePath, pngPath) - try: - image = Image.open(pngPath.show()) - image = image.convert("RGB") - image.save(pdfPath.show(), "PDF", resolution=100.0) - print(f'PDF file {pdfPath.filePath} successfully generated.') - - except Exception as e: - raise utils.DataErr(pdfPath.show(), f'Error generating PDF file: {e}') - - if not ARGS.generate_svg: - os.remove(svgFilePath.show()) - -ClassPat = Dict[str, List[List[float]]] -def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat, Dict[str, List[str]]]: - columnNames :Dict[str, List[str]] = {} # { datasetName : [ columnName, ... ], ... } - class_pat :ClassPat = {} - if ARGS.option == 'datasets': - num = 1 - for path, name in zip(datasetsPaths, names): - name = str(name) - if name == 'Dataset': - name += '_' + str(num) - - values, ids = getDatasetValues(path, name) - if values != None: - class_pat[name] = list(map(list, zip(*values.values()))) # TODO: ??? - columnNames[name] = ["Reactions", *values.keys()] - - num += 1 - - elif ARGS.option == "dataset_class": - classes = read_dataset(classPath, "class") - classes = classes.astype(str) - - values, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") - if values != None: - class_pat_with_samples_id = split_class(classes, values) - - for clas, values_and_samples_id in class_pat_with_samples_id.items(): - class_pat[clas] = values_and_samples_id["values"] - columnNames[clas] = ["Reactions", *values_and_samples_id["samples"]] - - return ids, class_pat, columnNames - -def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: - """ - Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. - - Args: - datasetPath : path to the dataset - datasetName (str): dataset name, used in error reporting - - Returns: - Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset - """ - dataset = read_dataset(datasetPath, datasetName) - IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) - - dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") - return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs - -############################ MAIN ############################################# -def main(args:List[str] = None) -> None: - """ - Initializes everything and sets the program in motion based on the fronted input arguments. - - Returns: - None - - Raises: - sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) - """ - global ARGS - ARGS = process_args(args) - - # Create output folder - if not os.path.isdir(ARGS.output_path): - os.makedirs(ARGS.output_path, exist_ok=True) - - core_map: ET.ElementTree = ARGS.choice_map.getMap( - ARGS.tool_dir, - utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) - - # Prepare enrichment results containers - ras_results = [] - rps_results = [] - - # Compute RAS enrichment if requested - if ARGS.using_RAS: - ids_ras, class_pat_ras, _ = getClassesAndIdsFromDatasets( - ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) - ras_results, _ = computeEnrichment(class_pat_ras, ids_ras, fromRAS=True) - - - # Compute RPS enrichment if requested - if ARGS.using_RPS: - ids_rps, class_pat_rps, columnNames = getClassesAndIdsFromDatasets( - ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) - - rps_results, netRPS = computeEnrichment(class_pat_rps, ids_rps, fromRAS=False) - - # Organize by comparison pairs - comparisons: Dict[Tuple[str, str], Dict[str, Tuple]] = {} - for i, j, comparison_data, max_z_score in ras_results: - comparisons[(i, j)] = {'ras': (comparison_data, max_z_score), 'rps': None} - - for i, j, comparison_data, max_z_score, in rps_results: - comparisons.setdefault((i, j), {}).update({'rps': (comparison_data, max_z_score)}) - - # For each comparison, create a styled map with RAS bodies and RPS heads - for (i, j), res in comparisons.items(): - map_copy = copy.deepcopy(core_map) - - # Apply RAS styling to arrow bodies - if res.get('ras'): - tmp_ras, max_z_ras = res['ras'] - temp_thingsInCommon(tmp_ras, map_copy, max_z_ras, i, j, ras_enrichment=True) - - # Apply RPS styling to arrow heads - if res.get('rps'): - tmp_rps, max_z_rps = res['rps'] - - temp_thingsInCommon(tmp_rps, map_copy, max_z_rps, i, j, ras_enrichment=False) - - # Output both SVG and PDF/PNG as configured - createOutputMaps(i, j, map_copy) - - # Add net RPS output file - if ARGS.net or not ARGS.using_RAS: - for datasetName, rows in netRPS.items(): - writeToCsv( - [[reactId, *netValues] for reactId, netValues in rows.items()], - columnNames.get(datasetName, ["Reactions"]), - utils.FilePath( - "Net_RPS_" + datasetName, - ext = utils.FileFormat.CSV, - prefix = ARGS.output_path)) - - print('Execution succeeded') -############################################################################### -if __name__ == "__main__": - main() +""" +MAREA: Enrichment and map styling for RAS/RPS data. + +This module compares groups of samples using RAS (Reaction Activity Scores) and/or +RPS (Reaction Propensity Scores), computes statistics (p-values, z-scores, fold change), +and applies visual styling to an SVG metabolic map (with optional PDF/PNG export). +""" +from __future__ import division +import csv +from enum import Enum +import re +import sys +import numpy as np +import pandas as pd +import itertools as it +import scipy.stats as st +import lxml.etree as ET +import math +try: + from .utils import general_utils as utils +except: + import utils.general_utils as utils +from PIL import Image +import os +import argparse +import pyvips +from typing import Tuple, Union, Optional, List, Dict +import copy + +from pydeseq2.dds import DeseqDataSet +from pydeseq2.default_inference import DefaultInference +from pydeseq2.ds import DeseqStats + +ERRORS = [] +########################## argparse ########################################## +ARGS :argparse.Namespace +def process_args(args:List[str] = None) -> argparse.Namespace: + """ + Parse command-line arguments exposed by the Galaxy frontend for this module. + + Args: + args: Optional list of arguments, defaults to sys.argv when None. + + Returns: + Namespace: Parsed arguments. + """ + parser = argparse.ArgumentParser( + usage = "%(prog)s [options]", + description = "process some value's genes to create a comparison's map.") + + #General: + parser.add_argument( + '-td', '--tool_dir', + type = str, + default = os.path.dirname(os.path.abspath(__file__)), + help = 'your tool directory (default: auto-detected package location)') + + parser.add_argument('-on', '--control', type = str) + parser.add_argument('-ol', '--out_log', help = "Output log") + + #Computation details: + parser.add_argument( + '-co', '--comparison', + type = str, + default = 'manyvsmany', + choices = ['manyvsmany', 'onevsrest', 'onevsmany']) + + parser.add_argument( + '-te' ,'--test', + type = str, + default = 'ks', + choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw', 'DESeq'], + help = 'Statistical test to use (default: %(default)s)') + + parser.add_argument( + '-pv' ,'--pValue', + type = float, + default = 0.1, + help = 'P-Value threshold (default: %(default)s)') + + parser.add_argument( + '-adj' ,'--adjusted', + type = utils.Bool("adjusted"), default = False, + help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)') + + parser.add_argument( + '-fc', '--fChange', + type = float, + default = 1.5, + help = 'Fold-Change threshold (default: %(default)s)') + + parser.add_argument( + "-ne", "--net", + type = utils.Bool("net"), default = False, + help = "choose if you want net enrichment for RPS") + + parser.add_argument( + '-op', '--option', + type = str, + choices = ['datasets', 'dataset_class'], + help='dataset or dataset and class') + + #RAS: + parser.add_argument( + "-ra", "--using_RAS", + type = utils.Bool("using_RAS"), default = True, + help = "choose whether to use RAS datasets.") + + parser.add_argument( + '-id', '--input_data', + type = str, + help = 'input dataset') + + parser.add_argument( + '-ic', '--input_class', + type = str, + help = 'sample group specification') + + parser.add_argument( + '-ids', '--input_datas', + type = str, + nargs = '+', + help = 'input datasets') + + parser.add_argument( + '-na', '--names', + type = str, + nargs = '+', + help = 'input names') + + #RPS: + parser.add_argument( + "-rp", "--using_RPS", + type = utils.Bool("using_RPS"), default = False, + help = "choose whether to use RPS datasets.") + + parser.add_argument( + '-idr', '--input_data_rps', + type = str, + help = 'input dataset rps') + + parser.add_argument( + '-icr', '--input_class_rps', + type = str, + help = 'sample group specification rps') + + parser.add_argument( + '-idsr', '--input_datas_rps', + type = str, + nargs = '+', + help = 'input datasets rps') + + parser.add_argument( + '-nar', '--names_rps', + type = str, + nargs = '+', + help = 'input names rps') + + #Output: + parser.add_argument( + "-gs", "--generate_svg", + type = utils.Bool("generate_svg"), default = True, + help = "choose whether to use RAS datasets.") + + parser.add_argument( + "-gp", "--generate_pdf", + type = utils.Bool("generate_pdf"), default = True, + help = "choose whether to use RAS datasets.") + + parser.add_argument( + '-cm', '--custom_map', + type = str, + help='custom map to use') + + parser.add_argument( + '-idop', '--output_path', + type = str, + default='result', + help = 'output path for maps') + + parser.add_argument( + '-mc', '--choice_map', + type = utils.Model, default = utils.Model.HMRcore, + choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) + + args :argparse.Namespace = parser.parse_args(args) + if args.using_RAS and not args.using_RPS: args.net = False + + return args + +############################ dataset input #################################### +def read_dataset(data :str, name :str) -> pd.DataFrame: + """ + Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. + + Args: + data : filepath of a dataset (from frontend input params or literals upon calling) + name : name associated with the dataset (from frontend input params or literals upon calling) + + Returns: + pd.DataFrame : dataset in a runtime operable shape + + Raises: + sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns + """ + try: + dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + return dataset + +############################ map_methods ###################################### +FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] +def fold_change(avg1 :float, avg2 :float) -> FoldChange: + """ + Calculates the fold change between two gene expression values. + + Args: + avg1 : average expression value from one dataset avg2 : average expression value from the other dataset + + Returns: + FoldChange : + 0 : when both input values are 0 + "-INF" : when avg1 is 0 + "INF" : when avg2 is 0 + float : for any other combination of values + """ + if avg1 == 0 and avg2 == 0: + return 0 + + if avg1 == 0: + return '-INF' # TODO: maybe fix + + if avg2 == 0: + return 'INF' + + # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 + return (avg1 - avg2) / (abs(avg1) + abs(avg2)) + +# TODO: I would really like for this one to get the Thanos treatment +def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: + """ + Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. + + Args: + l : current style string of an SVG element + col : new value for the "stroke" style property + width : new value for the "stroke-width" style property + dash : new value for the "stroke-dasharray" style property + + Returns: + str : the fixed style string + """ + tmp = l.split(';') + flag_col = False + flag_width = False + flag_dash = False + for i in range(len(tmp)): + if tmp[i].startswith('stroke:'): + tmp[i] = 'stroke:' + col + flag_col = True + if tmp[i].startswith('stroke-width:'): + tmp[i] = 'stroke-width:' + width + flag_width = True + if tmp[i].startswith('stroke-dasharray:'): + tmp[i] = 'stroke-dasharray:' + dash + flag_dash = True + if not flag_col: + tmp.append('stroke:' + col) + if not flag_width: + tmp.append('stroke-width:' + width) + if not flag_dash: + tmp.append('stroke-dasharray:' + dash) + return ';'.join(tmp) + +def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: + """ + Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. + + Args: + d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) + core_map : SVG map to modify + threshold_P_V : threshold for a p-value to be considered significant + threshold_F_C : threshold for a fold change value to be considered significant + max_z_score : highest z-score (absolute value) + + Returns: + ET.ElementTree : the modified core_map + + Side effects: + core_map : mut + """ + maxT = 12 + minT = 2 + grey = '#BEBEBE' + blue = '#6495ed' + red = '#ecac68' + for el in core_map.iter(): + el_id = str(el.get('id')) + if el_id.startswith('R_'): + tmp = d.get(el_id[2:]) + if tmp != None: + p_val, f_c, z_score, avg1, avg2 = tmp + + if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue + + if p_val <= threshold_P_V: # p-value is OK + if not isinstance(f_c, str): # FC is finite + if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # FC is not OK + col = grey + width = str(minT) + else: # FC is OK + if f_c < 0: + col = blue + elif f_c > 0: + col = red + width = str( + min( + max(abs(z_score * maxT) / max_z_score, minT), + maxT)) + + else: # FC is infinite + if f_c == '-INF': + col = blue + elif f_c == 'INF': + col = red + width = str(maxT) + dash = 'none' + else: # p-value is not OK + dash = '5,5' + col = grey + width = str(minT) + el.set('style', fix_style(el.get('style', ""), col, width, dash)) + return core_map + +def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: + """ + Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but + not enforced, if more than one element with the exact ID is found only the first will be returned. + + Args: + reactionId (str): exact ID of the requested element. + metabMap (ET.ElementTree): metabolic map containing the element. + + Returns: + utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. + """ + return utils.Result.Ok( + f"//*[@id=\"{reactionId}\"]").map( + lambda xPath : metabMap.xpath(xPath)[0]).mapErr( + lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) + +def styleMapElement(element :ET.Element, styleStr :str) -> None: + """Append/override stroke-related styles on a given SVG element.""" + currentStyles :str = element.get("style", "") + if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): + currentStyles = ';'.join(currentStyles.split(';')[:-3]) + + element.set("style", currentStyles + styleStr) + +class ReactionDirection(Enum): + Unknown = "" + Direct = "_F" + Inverse = "_B" + + @classmethod + def fromDir(cls, s :str) -> "ReactionDirection": + # vvv as long as there's so few variants I actually condone the if spam: + if s == ReactionDirection.Direct.value: return ReactionDirection.Direct + if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse + return ReactionDirection.Unknown + + @classmethod + def fromReactionId(cls, reactionId :str) -> "ReactionDirection": + return ReactionDirection.fromDir(reactionId[-2:]) + +def getArrowBodyElementId(reactionId :str) -> str: + """Return the SVG element id for a reaction arrow body, normalizing direction tags.""" + if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV + elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] + return f"R_{reactionId}" + +def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: + """ + We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. + + Args: + reactionId : the provided reaction ID. + + Returns: + Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. + """ + if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV + elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: + return reactionId[:-3:-1] + reactionId[:-2], "" # ^^^ Invert _F to F_ + + return f"F_{reactionId}", f"B_{reactionId}" + +class ArrowColor(Enum): + """ + Encodes possible arrow colors based on their meaning in the enrichment process. + """ + Invalid = "#BEBEBE" # gray, fold-change under treshold or not significant p-value + Transparent = "#ffffff00" # transparent, to make some arrow segments disappear + UpRegulated = "#ecac68" # orange, up-regulated reaction + DownRegulated = "#6495ed" # lightblue, down-regulated reaction + + UpRegulatedInv = "#FF0000" # bright red for reversible with conflicting directions + + DownRegulatedInv = "#0000FF" # bright blue for reversible with conflicting directions + + @classmethod + def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": + colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) + return colors[useAltColor] + + def __str__(self) -> str: return self.value + +class Arrow: + """ + Models the properties of a reaction arrow that change based on enrichment. + """ + MIN_W = 2 + MAX_W = 12 + + def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: + """ + (Private) Initializes an instance of Arrow. + + Args: + width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). + col : color of the arrow. + isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. + + Returns: + None : practically, a Arrow instance. + """ + self.w = width + self.col = col + self.dash = isDashed + + def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: + if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: + ERRORS.append(reactionId) + + def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: + # If direction is irrelevant (e.g., RAS), style only the arrow body + if not mindReactionDir: + return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) + + # Now we style the arrow head(s): + idOpt1, idOpt2 = getArrowHeadElementId(reactionId) + self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) + if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) + + def toStyleStr(self, *, downSizedForTips = False) -> str: + """ + Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. + + Returns: + str : the styles string. + """ + width = self.w + if downSizedForTips: width *= 0.8 + return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" + +# Default arrows used for different significance states +INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) +INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) +TRANSPARENT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Transparent) # Who cares how big it is if it's transparent + +def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: + """ + Applies RPS enrichment results to the provided metabolic map. + + Args: + rpsEnrichmentRes : RPS enrichment results. + metabMap : the metabolic map to edit. + maxNumericZScore : biggest finite z-score value found. + + Side effects: + metabMap : mut + + Returns: + None + """ + for reactionId, values in rpsEnrichmentRes.items(): + pValue = values[0] + foldChange = values[1] + z_score = values[2] + + if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): continue + + if isinstance(foldChange, str): foldChange = float(foldChange) + if pValue > ARGS.pValue: # pValue above tresh: dashed arrow + INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) + continue + + if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): + INVALID_ARROW.styleReactionElements(metabMap, reactionId) + continue + + width = Arrow.MAX_W + if not math.isinf(z_score): + try: width = min( + max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), + Arrow.MAX_W) + + except ZeroDivisionError: pass + + if not reactionId.endswith("_RV"): # RV stands for reversible reactions + Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) + continue + + reactionId = reactionId[:-3] # Remove "_RV" + + inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score + if inversionScore == 2: foldChange *= -1 + + # If the score is 1 (opposite signs) we use alternative colors vvv + arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) + + # vvv These 2 if statements can both be true and can both happen + if ARGS.net: # style arrow head(s): + arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) + + if not ARGS.using_RAS: # style arrow body + arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) + +############################ split class ###################################### +def split_class(classes :pd.DataFrame, dataset_values :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: + """ + Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. + + Args: + classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict + dataset_values : a :dict containing :float data + + Returns: + dict : the dict with data grouped by class + + Side effects: + classes : mut + """ + class_pat :Dict[str, List[List[float]]] = {} + for i in range(len(classes)): + classe :str = classes.iloc[i, 1] + if pd.isnull(classe): continue + + l :List[List[float]] = [] + sample_ids: List[str] = [] + + for j in range(i, len(classes)): + if classes.iloc[j, 1] == classe: + pat_id :str = classes.iloc[j, 0] # sample name + values = dataset_values.get(pat_id, None) # the column of values for that sample + if values != None: + l.append(values) + sample_ids.append(pat_id) + classes.iloc[j, 1] = None # TODO: problems? + + if l: + class_pat[classe] = { + "values": list(map(list, zip(*l))), # transpose + "samples": sample_ids + } + continue + + utils.logWarning( + f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) + + return class_pat + +############################ conversion ############################################## +# Conversion from SVG to PNG +def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: + """ + Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. + + Args: + svg_path : path to SVG file + png_path : path for new PNG file + dpi : dots per inch of the generated PNG + scale : scaling factor for the generated PNG, computed internally when a size is provided + size : final effective width of the generated PNG + + Returns: + None + """ + if size: + image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) + scale = size / image.width + image = image.resize(scale) + else: + image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) + + white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) + white_background = white_background.affine([scale, 0, 0, scale]) + + if white_background.bands != image.bands: + white_background = white_background.extract_band(0) + + composite_image = white_background.composite2(image, 'over') + composite_image.write_to_file(png_path.show()) + +def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: + """ + Converts the SVG map at the provided path to PDF. + + Args: + file_svg : path to SVG file + file_png : path to PNG file + file_pdf : path to new PDF file + + Returns: + None + """ + svg_to_png_with_background(file_svg, file_png) + try: + image = Image.open(file_png.show()) + image = image.convert("RGB") + image.save(file_pdf.show(), "PDF", resolution=100.0) + print(f'PDF file {file_pdf.filePath} successfully generated.') + + except Exception as e: + raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') + +############################ map ############################################## +def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: + """ + Builds a FilePath instance from the names of confronted datasets ready to point to a location in the + "result/" folder, used by this tool for output files in collections. + + Args: + dataset1Name : _description_ + dataset2Name : _description_. Defaults to "rest". + details : _description_ + ext : _description_ + + Returns: + utils.FilePath : _description_ + """ + return utils.FilePath( + f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), + ext, + prefix = ARGS.output_path) + +FIELD_NOT_AVAILABLE = '/' +def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: + fieldsAmt = len(fieldNames) + with open(outPath.show(), "w", newline = "") as fd: + writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') + writer.writeheader() + + for row in rows: + sizeMismatch = fieldsAmt - len(row) + if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) + writer.writerow({ field : data for field, data in zip(fieldNames, row) }) + +OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] +def temp_thingsInCommon(tmp :OldEnrichedScores, core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: + suffix = "RAS" if ras_enrichment else "RPS" + writeToCsv( + [ [reactId] + values for reactId, values in tmp.items() ], + ["ids", "P_Value", "fold change", "z-score", "average_1", "average_2"], + buildOutputPath(dataset1Name, dataset2Name, details = f"Tabular Result ({suffix})", ext = utils.FileFormat.TSV)) + + if ras_enrichment: + fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) + return + + for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) + applyRpsEnrichmentToMap(tmp, core_map, max_z_score) + +def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: + """ + Computes the statistical significance score (P-value) of the comparison between coherent data + from two datasets. The data is supposed to, in both datasets: + - be related to the same reaction ID; + - be ordered by sample, such that the item at position i in both lists is related to the + same sample or cell line. + + Args: + dataset1Data : data from the 1st dataset. + dataset2Data : data from the 2nd dataset. + + Returns: + tuple: (P-value, Z-score) + - P-value from the selected test on the provided data. + - Z-score of the difference between means of the two datasets. + """ + match ARGS.test: + case "ks": + # Perform Kolmogorov-Smirnov test + _, p_value = st.ks_2samp(dataset1Data, dataset2Data) + case "ttest_p": + # Datasets should have same size + if len(dataset1Data) != len(dataset2Data): + raise ValueError("Datasets must have the same size for paired t-test.") + # Perform t-test for paired samples + _, p_value = st.ttest_rel(dataset1Data, dataset2Data) + case "ttest_ind": + # Perform t-test for independent samples + _, p_value = st.ttest_ind(dataset1Data, dataset2Data) + case "wilcoxon": + # Datasets should have same size + if len(dataset1Data) != len(dataset2Data): + raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.") + # Perform Wilcoxon signed-rank test + np.random.seed(42) # Ensure reproducibility since zsplit method is used + _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method='zsplit') + case "mw": + # Perform Mann-Whitney U test + _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) + case _: + p_value = np.nan # Default value if no valid test is selected + + # Calculate means and standard deviations + mean1 = np.mean(dataset1Data) + mean2 = np.mean(dataset2Data) + std1 = np.std(dataset1Data, ddof=1) + std2 = np.std(dataset2Data, ddof=1) + + n1 = len(dataset1Data) + n2 = len(dataset2Data) + + # Calculate Z-score + z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) + + return p_value, z_score + + +def DESeqPValue(comparisonResult :Dict[str, List[Union[float, FoldChange]]], dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> None: + """ + Computes the p-value for each reaction in the comparisonResult dictionary using DESeq2. + + Args: + comparisonResult : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) + dataset1Data : data from the 1st dataset. + dataset2Data : data from the 2nd dataset. + ids : list of reaction IDs. + + Returns: + None : mutates the comparisonResult dictionary in place with the p-values. + """ + + # pyDESeq2 needs at least 2 replicates per sample so I check this + if len(dataset1Data[0]) < 2 or len(dataset2Data[0]) < 2: + raise ValueError("Datasets must have at least 2 replicates each") + + # pyDESeq2 is based on pandas, so we need to convert the data into a DataFrame and clean it from NaN values + dataframe1 = pd.DataFrame(dataset1Data, index=ids) + dataframe2 = pd.DataFrame(dataset2Data, index=ids) + + # pyDESeq2 requires datasets to be samples x reactions and integer values + dataframe1_clean = dataframe1.dropna(axis=0, how="any").T.astype(int) + dataframe2_clean = dataframe2.dropna(axis=0, how="any").T.astype(int) + dataframe1_clean.index = [f"ds1_rep{i+1}" for i in range(dataframe1_clean.shape[0])] + dataframe2_clean.index = [f"ds2_rep{j+1}" for j in range(dataframe2_clean.shape[0])] + + # pyDESeq2 works on a DataFrame with values and another with infos about how samples are split (like dataset class) + dataframe = pd.concat([dataframe1_clean, dataframe2_clean], axis=0) + metadata = pd.DataFrame({"dataset": (["dataset1"]*dataframe1_clean.shape[0] + ["dataset2"]*dataframe2_clean.shape[0])}, index=dataframe.index) + + # Ensure the index of the metadata matches the index of the dataframe + if not dataframe.index.equals(metadata.index): + raise ValueError("The index of the metadata DataFrame must match the index of the counts DataFrame.") + + # Prepare and run pyDESeq2 + inference = DefaultInference() + dds = DeseqDataSet(counts=dataframe, metadata=metadata, design="~dataset", inference=inference, quiet=True, low_memory=True) + dds.deseq2() + ds = DeseqStats(dds, contrast=["dataset", "dataset1", "dataset2"], inference=inference, quiet=True) + ds.summary() + + # Retrieve the p-values from the DESeq2 results + for reactId in ds.results_df.index: + comparisonResult[reactId][0] = ds.results_df["pvalue"][reactId] + + +# TODO: the net RPS computation should be done in the RPS module +def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float, Dict[str, Tuple[np.ndarray, np.ndarray]]]: + + netRPS :Dict[str, Tuple[np.ndarray, np.ndarray]] = {} + comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {} + count = 0 + max_z_score = 0 + + for l1, l2 in zip(dataset1Data, dataset2Data): + reactId = ids[count] + count += 1 + if not reactId: continue + + try: #TODO: identify the source of these errors and minimize code in the try block + reactDir = ReactionDirection.fromReactionId(reactId) + # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used + if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: + try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) + except ValueError: continue # we look for the complementary id, if not found we skip + + nets1 = np.subtract(l1, dataset1Data[position]) + nets2 = np.subtract(l2, dataset2Data[position]) + netRPS[reactId] = (nets1, nets2) + + # Compute p-value and z-score for the RPS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 + p_value, z_score = computePValue(nets1, nets2) + avg1 = sum(nets1) / len(nets1) + avg2 = sum(nets2) / len(nets2) + net = fold_change(avg1, avg2) + + if math.isnan(net): continue + comparisonResult[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] + + # vvv complementary directional ids are set to None once processed if net is to be applied to tips + if ARGS.net: # If only using RPS, we cannot delete the inverse, as it's needed to color the arrows + ids[position] = None + continue + + # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used + # Compute p-value and z-score for the RAS scores, if the pyDESeq option is set, p-values will be computed after and this function will return p_value = 0 + p_value, z_score = computePValue(l1, l2) + avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) + # vvv TODO: Check numpy version compatibility + if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) + comparisonResult[reactId] = [float(p_value), avg, z_score, sum(l1) / len(l1), sum(l2) / len(l2)] + + except (TypeError, ZeroDivisionError): continue + + if ARGS.test == "DESeq": + # Compute p-values using DESeq2 + DESeqPValue(comparisonResult, dataset1Data, dataset2Data, ids) + + # Apply multiple testing correction if set by the user + if ARGS.adjusted: + + # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN + validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])] + # Unpack the valid p-values + reactIds, pValues = zip(*validPValues) + # Adjust the p-values using the Benjamini-Hochberg method + adjustedPValues = st.false_discovery_control(pValues) + # Update the comparisonResult dictionary with the adjusted p-values + for reactId , adjustedPValue in zip(reactIds, adjustedPValues): + comparisonResult[reactId][0] = adjustedPValue + + return comparisonResult, max_z_score, netRPS + +def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> Tuple[List[Tuple[str, str, dict, float]], dict]: + """ + Compares clustered data based on a given comparison mode and applies enrichment-based styling on the + provided metabolic map. + + Args: + class_pat : the clustered data. + ids : ids for data association. + fromRAS : whether the data to enrich consists of RAS scores. + + Returns: + tuple: A tuple containing: + - List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary and max z-score. + - dict : net RPS values for each dataset's reactions + + Raises: + sys.exit : if there are less than 2 classes for comparison + """ + class_pat = {k.strip(): v for k, v in class_pat.items()} + if (not class_pat) or (len(class_pat.keys()) < 2): + sys.exit('Execution aborted: classes provided for comparisons are less than two\n') + + # { datasetName : { reactId : netRPS, ... }, ... } + netRPSResults :Dict[str, Dict[str, np.ndarray]] = {} + enrichment_results = [] + + if ARGS.comparison == "manyvsmany": + for i, j in it.combinations(class_pat.keys(), 2): + comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) + enrichment_results.append((i, j, comparisonDict, max_z_score)) + netRPSResults[i] = { reactId : net[0] for reactId, net in netRPS.items() } + netRPSResults[j] = { reactId : net[1] for reactId, net in netRPS.items() } + + elif ARGS.comparison == "onevsrest": + for single_cluster in class_pat.keys(): + rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] + comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(single_cluster), rest, ids) + enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) + netRPSResults[single_cluster] = { reactId : net[0] for reactId, net in netRPS.items() } + netRPSResults["rest"] = { reactId : net[1] for reactId, net in netRPS.items() } + + elif ARGS.comparison == "onevsmany": + controlItems = class_pat.get(ARGS.control) + for otherDataset in class_pat.keys(): + if otherDataset == ARGS.control: + continue + + #comparisonDict, max_z_score, netRPS = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) + comparisonDict, max_z_score, netRPS = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids) + #enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) + enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score)) + netRPSResults[otherDataset] = { reactId : net[0] for reactId, net in netRPS.items() } + netRPSResults[ARGS.control] = { reactId : net[1] for reactId, net in netRPS.items() } + + return enrichment_results, netRPSResults + +def createOutputMaps(dataset1Name: str, dataset2Name: str, core_map: ET.ElementTree) -> None: + svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) + utils.writeSvg(svgFilePath, core_map) + + if ARGS.generate_pdf: + pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) + pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) + svg_to_png_with_background(svgFilePath, pngPath) + try: + image = Image.open(pngPath.show()) + image = image.convert("RGB") + image.save(pdfPath.show(), "PDF", resolution=100.0) + print(f'PDF file {pdfPath.filePath} successfully generated.') + + except Exception as e: + raise utils.DataErr(pdfPath.show(), f'Error generating PDF file: {e}') + + if not ARGS.generate_svg: + os.remove(svgFilePath.show()) + +ClassPat = Dict[str, List[List[float]]] +def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat, Dict[str, List[str]]]: + columnNames :Dict[str, List[str]] = {} # { datasetName : [ columnName, ... ], ... } + class_pat :ClassPat = {} + if ARGS.option == 'datasets': + num = 1 + for path, name in zip(datasetsPaths, names): + name = str(name) + if name == 'Dataset': + name += '_' + str(num) + + values, ids = getDatasetValues(path, name) + if values != None: + class_pat[name] = list(map(list, zip(*values.values()))) # TODO: ??? + columnNames[name] = ["Reactions", *values.keys()] + + num += 1 + + elif ARGS.option == "dataset_class": + classes = read_dataset(classPath, "class") + classes = classes.astype(str) + + values, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") + if values != None: + class_pat_with_samples_id = split_class(classes, values) + + for clas, values_and_samples_id in class_pat_with_samples_id.items(): + class_pat[clas] = values_and_samples_id["values"] + columnNames[clas] = ["Reactions", *values_and_samples_id["samples"]] + + return ids, class_pat, columnNames + +def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: + """ + Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. + + Args: + datasetPath : path to the dataset + datasetName (str): dataset name, used in error reporting + + Returns: + Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset + """ + dataset = read_dataset(datasetPath, datasetName) + IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) + + dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") + return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs + +############################ MAIN ############################################# +def main(args:List[str] = None) -> None: + """ + Initializes everything and sets the program in motion based on the fronted input arguments. + + Returns: + None + + Raises: + sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) + """ + global ARGS + ARGS = process_args(args) + + # Create output folder + if not os.path.isdir(ARGS.output_path): + os.makedirs(ARGS.output_path, exist_ok=True) + + core_map: ET.ElementTree = ARGS.choice_map.getMap( + ARGS.tool_dir, + utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) + + # Prepare enrichment results containers + ras_results = [] + rps_results = [] + + # Compute RAS enrichment if requested + if ARGS.using_RAS: + ids_ras, class_pat_ras, _ = getClassesAndIdsFromDatasets( + ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) + ras_results, _ = computeEnrichment(class_pat_ras, ids_ras, fromRAS=True) + + + # Compute RPS enrichment if requested + if ARGS.using_RPS: + ids_rps, class_pat_rps, columnNames = getClassesAndIdsFromDatasets( + ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) + + rps_results, netRPS = computeEnrichment(class_pat_rps, ids_rps, fromRAS=False) + + # Organize by comparison pairs + comparisons: Dict[Tuple[str, str], Dict[str, Tuple]] = {} + for i, j, comparison_data, max_z_score in ras_results: + comparisons[(i, j)] = {'ras': (comparison_data, max_z_score), 'rps': None} + + for i, j, comparison_data, max_z_score, in rps_results: + comparisons.setdefault((i, j), {}).update({'rps': (comparison_data, max_z_score)}) + + # For each comparison, create a styled map with RAS bodies and RPS heads + for (i, j), res in comparisons.items(): + map_copy = copy.deepcopy(core_map) + + # Apply RAS styling to arrow bodies + if res.get('ras'): + tmp_ras, max_z_ras = res['ras'] + temp_thingsInCommon(tmp_ras, map_copy, max_z_ras, i, j, ras_enrichment=True) + + # Apply RPS styling to arrow heads + if res.get('rps'): + tmp_rps, max_z_rps = res['rps'] + + temp_thingsInCommon(tmp_rps, map_copy, max_z_rps, i, j, ras_enrichment=False) + + # Output both SVG and PDF/PNG as configured + createOutputMaps(i, j, map_copy) + + # Add net RPS output file + if ARGS.net or not ARGS.using_RAS: + for datasetName, rows in netRPS.items(): + writeToCsv( + [[reactId, *netValues] for reactId, netValues in rows.items()], + columnNames.get(datasetName, ["Reactions"]), + utils.FilePath( + "Net_RPS_" + datasetName, + ext = utils.FileFormat.CSV, + prefix = ARGS.output_path)) + + print('Execution succeeded') +############################################################################### +if __name__ == "__main__": + main()
