Mercurial > repos > bimib > cobraxy
diff cobraxy-9688ad27287b/COBRAxy/utils/CBS_backend.py @ 92:fdf713bb5772 draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 11:39:53 +0000 |
parents | a48b2e06ebe7 |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cobraxy-9688ad27287b/COBRAxy/utils/CBS_backend.py Sun Oct 13 11:39:53 2024 +0000 @@ -0,0 +1,200 @@ +from swiglpk import * +import random +import pandas as pd +import numpy as np +import cobra as cb + +# Initialize LP problem +def initialize_lp_problem(S): + + len_vector=len(S.keys()) + values=list(S.values()) + indexes=list(S.keys()) + ia = intArray(len_vector+1); + ja = intArray(len_vector+1); + ar = doubleArray(len_vector+1); + + i=0 + ind_row=[indexes[i][0]+1 for i in range(0, len(values) )] + ind_col=[indexes[i][1]+1 for i in range(0, len(values) )] + for i in range(1, len(values) + 1): + ia[i]=ind_row[i-1] + ja[i]=ind_col[i-1] + ar[i] = values[i-1] + + nrows=S.shape[0] + ncol=S.shape[1] + + return len_vector, values, indexes, ia, ja, ar, nrows, ncol + + + +# Solve LP problem from the structure of the metabolic model +def create_and_solve_lp_problem(lb,ub,nrows, ncol, len_vector, ia, ja, ar, + obj_coefs,reactions,return_lp=False): + + + lp = glp_create_prob(); + glp_set_prob_name(lp, "sample"); + glp_set_obj_dir(lp, GLP_MAX); + glp_add_rows(lp, nrows); + eps = 1e-16 + for i in range(nrows): + glp_set_row_name(lp, i+1, "constrain_"+str(i+1)); + glp_set_row_bnds(lp, i+1, GLP_FX, 0.0, 0.0); + glp_add_cols(lp, ncol); + for i in range(ncol): + glp_set_col_name(lp, i+1, "flux_"+str(i+1)); + glp_set_col_bnds(lp, i+1, GLP_DB,lb[i]-eps,ub[i]+eps); + glp_load_matrix(lp, len_vector, ia, ja, ar); + + try: + fluxes,Z=solve_lp_problem(lp,obj_coefs,reactions) + if return_lp: + return fluxes,Z,lp + else: + glp_delete_prob(lp); + return fluxes,Z + except Exception as e: + glp_delete_prob(lp) + raise Exception(e) + + +# Solve LP problem from the structure of the metabolic model +def solve_lp_problem(lp,obj_coefs,reactions): + + # Set the coefficients of the objective function + i=1 + for ind_coef in obj_coefs: + glp_set_obj_coef(lp, i, ind_coef); + i+=1 + + # Initialize the parameters + params=glp_smcp() + params.presolve=GLP_ON + params.msg_lev = GLP_MSG_ALL + params.tm_lim=4000 + glp_init_smcp(params) + + # Solve the problem + glp_scale_prob(lp,GLP_SF_AUTO) + + value=glp_simplex(lp, params) + + Z = glp_get_obj_val(lp); + + if value == 0: + fluxes = [] + for i in range(len(reactions)): fluxes.append(glp_get_col_prim(lp, i+1)) + return fluxes,Z + else: + raise Exception("error in LP problem. Problem:",str(value)) + + +# Create LP structure +def create_lp_structure(model): + + reactions=[el.id for el in model.reactions] + coefs_obj=[reaction.objective_coefficient for reaction in model.reactions] + + # Lower and upper bounds + lb=[reaction.lower_bound for reaction in model.reactions] + ub=[reaction.upper_bound for reaction in model.reactions] + + # Create S matrix + S=cb.util.create_stoichiometric_matrix(model,array_type="dok") + + return S,lb,ub,coefs_obj,reactions + +# CBS sampling interface +def randomObjectiveFunctionSampling(model, nsample, coefficients_df, df_sample): + + S,lb,ub,coefs_obj,reactions = create_lp_structure(model) + len_vector, values, indexes, ia, ja, ar, nrow, ncol = initialize_lp_problem(S) + + for i in range(nsample): + + coefs_obj=coefficients_df.iloc[:,i].values + + if coefs_obj[-1]==1: #minimize + coefs_obj= coefs_obj[0:-1] * -1 + else: + coefs_obj=coefs_obj[0:-1] + + fluxes,Z = create_and_solve_lp_problem(lb,ub, nrow, ncol, len_vector, + ia, ja, ar, coefs_obj,reactions,return_lp=False) + df_sample.loc[i] = fluxes + pass + +def randomObjectiveFunctionSampling_cobrapy(model, nsample, coefficients_df, df_sample): + + for i in range(nsample): + + dict_coeff={} + if(coefficients_df.iloc[-1][i]==1): + type_problem = -1 #minimize + else: + type_problem = 1 + + for rxn in [reaction.id for reaction in model.reactions]: + dict_coeff[model.reactions.get_by_id(rxn)] = coefficients_df.loc[rxn][i] * type_problem + + model.objective = dict_coeff + solution = model.optimize().fluxes + for rxn, flux in solution.items(): + df_sample.loc[i][rxn] = flux + + pass + +# Create random coefficients for CBS +def randomObjectiveFunction(model, n_samples, df_fva, seed=0): + + + #reactions = model.reactions + reactions = [reaction.id for reaction in model.reactions] + cont=seed + list_ex=reactions.copy() + list_ex.append("type_of_problem") + coefficients_df = pd.DataFrame(index=list_ex,columns=[str(i) for i in range(n_samples)]) + + for i in range(0, n_samples): + + cont=cont+1 + random.seed(cont) + + # Genera un numero casuale tra 0 e 1 + threshold = random.random() #coefficiente tra 0 e 1 + + for reaction in reactions: + + cont=cont+1 + random.seed(cont) + + val=random.random() + + if val>threshold: + + cont=cont+1 + random.seed(cont) + + c=2*random.random()-1 #coefficiente tra -1 e 1 + + val_max=np.max([df_fva.loc[reaction,"minimum"],df_fva.loc[reaction,"maximum"]]) + + if val_max!=0: #solo se la fva รจ diversa da zero + coefficients_df.loc[reaction,str(i)] = c/val_max #divido per la fva + else: + coefficients_df.loc[reaction,str(i)] = 0 + + else: + coefficients_df.loc[reaction,str(i)] = 0 + + cont=cont+1 + random.seed(cont) + + if random.random()<0.5: + coefficients_df.loc["type_of_problem",str(i)] = 0 #maximize + else: + coefficients_df.loc["type_of_problem",str(i)] = 1 #minimize + + return coefficients_df \ No newline at end of file