Mercurial > repos > bimib > cobraxy
view COBRAxy/utils/CBS_backend.py @ 237:0916717a5443 draft
Uploaded
author | francesco_lapi |
---|---|
date | Tue, 07 Jan 2025 11:25:15 +0000 |
parents | 41f35c2f0c7b |
children |
line wrap: on
line source
from swiglpk import * import random import pandas as pd import numpy as np import cobra as cb # Initialize LP problem def initialize_lp_problem(S): len_vector=len(S.keys()) values=list(S.values()) indexes=list(S.keys()) ia = intArray(len_vector+1); ja = intArray(len_vector+1); ar = doubleArray(len_vector+1); i=0 ind_row=[indexes[i][0]+1 for i in range(0, len(values) )] ind_col=[indexes[i][1]+1 for i in range(0, len(values) )] for i in range(1, len(values) + 1): ia[i]=ind_row[i-1] ja[i]=ind_col[i-1] ar[i] = values[i-1] nrows=S.shape[0] ncol=S.shape[1] return len_vector, values, indexes, ia, ja, ar, nrows, ncol # Solve LP problem from the structure of the metabolic model def create_and_solve_lp_problem(lb,ub,nrows, ncol, len_vector, ia, ja, ar, obj_coefs,reactions,return_lp=False): lp = glp_create_prob(); glp_set_prob_name(lp, "sample"); glp_set_obj_dir(lp, GLP_MAX); glp_add_rows(lp, nrows); eps = 1e-16 for i in range(nrows): glp_set_row_name(lp, i+1, "constrain_"+str(i+1)); glp_set_row_bnds(lp, i+1, GLP_FX, 0.0, 0.0); glp_add_cols(lp, ncol); for i in range(ncol): glp_set_col_name(lp, i+1, "flux_"+str(i+1)); glp_set_col_bnds(lp, i+1, GLP_DB,lb[i]-eps,ub[i]+eps); glp_load_matrix(lp, len_vector, ia, ja, ar); try: fluxes,Z=solve_lp_problem(lp,obj_coefs,reactions) if return_lp: return fluxes,Z,lp else: glp_delete_prob(lp); return fluxes,Z except Exception as e: glp_delete_prob(lp) raise Exception(e) # Solve LP problem from the structure of the metabolic model def solve_lp_problem(lp,obj_coefs,reactions): # Set the coefficients of the objective function i=1 for ind_coef in obj_coefs: glp_set_obj_coef(lp, i, ind_coef); i+=1 # Initialize the parameters params=glp_smcp() params.presolve=GLP_ON params.msg_lev = GLP_MSG_ALL params.tm_lim=4000 glp_init_smcp(params) # Solve the problem glp_scale_prob(lp,GLP_SF_AUTO) value=glp_simplex(lp, params) Z = glp_get_obj_val(lp); if value == 0: fluxes = [] for i in range(len(reactions)): fluxes.append(glp_get_col_prim(lp, i+1)) return fluxes,Z else: raise Exception("error in LP problem. Problem:",str(value)) # Create LP structure def create_lp_structure(model): reactions=[el.id for el in model.reactions] coefs_obj=[reaction.objective_coefficient for reaction in model.reactions] # Lower and upper bounds lb=[reaction.lower_bound for reaction in model.reactions] ub=[reaction.upper_bound for reaction in model.reactions] # Create S matrix S=cb.util.create_stoichiometric_matrix(model,array_type="dok") return S,lb,ub,coefs_obj,reactions # CBS sampling interface def randomObjectiveFunctionSampling(model, nsample, coefficients_df, df_sample): S,lb,ub,coefs_obj,reactions = create_lp_structure(model) len_vector, values, indexes, ia, ja, ar, nrow, ncol = initialize_lp_problem(S) for i in range(nsample): coefs_obj=coefficients_df.iloc[:,i].values if coefs_obj[-1]==1: #minimize coefs_obj= coefs_obj[0:-1] * -1 else: coefs_obj=coefs_obj[0:-1] fluxes,Z = create_and_solve_lp_problem(lb,ub, nrow, ncol, len_vector, ia, ja, ar, coefs_obj,reactions,return_lp=False) df_sample.loc[i] = fluxes pass def randomObjectiveFunctionSampling_cobrapy(model, nsample, coefficients_df, df_sample): for i in range(nsample): dict_coeff={} if(coefficients_df.iloc[-1][i]==1): type_problem = -1 #minimize else: type_problem = 1 for rxn in [reaction.id for reaction in model.reactions]: dict_coeff[model.reactions.get_by_id(rxn)] = coefficients_df.loc[rxn][i] * type_problem model.objective = dict_coeff solution = model.optimize().fluxes for rxn, flux in solution.items(): df_sample.loc[i][rxn] = flux pass # Create random coefficients for CBS def randomObjectiveFunction(model, n_samples, df_fva, seed=0): #reactions = model.reactions reactions = [reaction.id for reaction in model.reactions] cont=seed list_ex=reactions.copy() list_ex.append("type_of_problem") coefficients_df = pd.DataFrame(index=list_ex,columns=[str(i) for i in range(n_samples)]) for i in range(0, n_samples): cont=cont+1 random.seed(cont) # Genera un numero casuale tra 0 e 1 threshold = random.random() #coefficiente tra 0 e 1 for reaction in reactions: cont=cont+1 random.seed(cont) val=random.random() if val>threshold: cont=cont+1 random.seed(cont) c=2*random.random()-1 #coefficiente tra -1 e 1 val_max=np.max([df_fva.loc[reaction,"minimum"],df_fva.loc[reaction,"maximum"]]) if val_max!=0: #solo se la fva รจ diversa da zero coefficients_df.loc[reaction,str(i)] = c/val_max #divido per la fva else: coefficients_df.loc[reaction,str(i)] = 0 else: coefficients_df.loc[reaction,str(i)] = 0 cont=cont+1 random.seed(cont) if random.random()<0.5: coefficients_df.loc["type_of_problem",str(i)] = 0 #maximize else: coefficients_df.loc["type_of_problem",str(i)] = 1 #minimize return coefficients_df