Mercurial > repos > bimib > cobraxy
view COBRAxy/ras_to_bounds.py @ 235:5c70439f2907 draft
Uploaded
author | luca_milaz |
---|---|
date | Tue, 17 Dec 2024 11:09:55 +0000 |
parents | c2ce7d75fceb |
children | 1e7a8da6c47a |
line wrap: on
line source
import argparse import utils.general_utils as utils from typing import Optional, List import os import numpy as np import pandas as pd import cobra import sys import csv from joblib import Parallel, delayed, cpu_count ################################# process args ############################### def process_args(args :List[str] = None) -> argparse.Namespace: """ Processes command-line arguments. Args: args (list): List of command-line arguments. Returns: Namespace: An object containing parsed arguments. """ parser = argparse.ArgumentParser(usage = '%(prog)s [options]', description = 'process some value\'s') parser.add_argument( '-ms', '--model_selector', type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], help = 'chose which type of model you want use') parser.add_argument("-mo", "--model", type = str, help = "path to input file with custom rules, if provided") parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") parser.add_argument( '-mes', '--medium_selector', default = "allOpen", help = 'chose which type of medium you want use') parser.add_argument("-meo", "--medium", type = str, help = "path to input file with custom medium, if provided") parser.add_argument('-ol', '--out_log', help = "Output log") parser.add_argument('-td', '--tool_dir', type = str, required = True, help = 'your tool directory') parser.add_argument('-ir', '--input_ras', type=str, required = False, help = 'input ras') parser.add_argument('-rn', '--name', type=str, help = 'ras class names') parser.add_argument('-rs', '--ras_selector', required = True, type=utils.Bool("using_RAS"), help = 'ras selector') parser.add_argument('-cc', '--cell_class', type = str, help = 'output of cell class') parser.add_argument( '-idop', '--output_path', type = str, default='ras_to_bounds/', help = 'output path for maps') ARGS = parser.parse_args(args) return ARGS ########################### warning ########################################### def warning(s :str) -> None: """ Log a warning message to an output log file and print it to the console. Args: s (str): The warning message to be logged and printed. Returns: None """ with open(ARGS.out_log, 'a') as log: log.write(s + "\n\n") print(s) ############################ dataset input #################################### def read_dataset(data :str, name :str) -> pd.DataFrame: """ Read a dataset from a CSV file and return it as a pandas DataFrame. Args: data (str): Path to the CSV file containing the dataset. name (str): Name of the dataset, used in error messages. Returns: pandas.DataFrame: DataFrame containing the dataset. Raises: pd.errors.EmptyDataError: If the CSV file is empty. sys.exit: If the CSV file has the wrong format, the execution is aborted. """ try: dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') except pd.errors.EmptyDataError: sys.exit('Execution aborted: wrong format of ' + name + '\n') if len(dataset.columns) < 2: sys.exit('Execution aborted: wrong format of ' + name + '\n') return dataset def apply_ras_bounds(bounds, ras_row): """ Adjust the bounds of reactions in the model based on RAS values. Args: bounds (pd.DataFrame): Model bounds. ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. Returns: new_bounds (pd.DataFrame): integrated bounds. """ new_bounds = bounds.copy() for reaction in ras_row.index: scaling_factor = ras_row[reaction] if not np.isnan(scaling_factor): lower_bound=bounds.loc[reaction, "lower_bound"] upper_bound=bounds.loc[reaction, "upper_bound"] valMax=float((upper_bound)*scaling_factor) valMin=float((lower_bound)*scaling_factor) if upper_bound!=0 and lower_bound==0: new_bounds.loc[reaction, "upper_bound"] = valMax if upper_bound==0 and lower_bound!=0: new_bounds.loc[reaction, "lower_bound"] = valMin if upper_bound!=0 and lower_bound!=0: new_bounds.loc[reaction, "lower_bound"] = valMin new_bounds.loc[reaction, "upper_bound"] = valMax return new_bounds def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): """ Process a single RAS cell, apply bounds, and save the bounds to a CSV file. Args: cellName (str): The name of the RAS cell (used for naming the output file). ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. model (cobra.Model): The metabolic model to be modified. rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. output_folder (str): Folder path where the output CSV file will be saved. Returns: None """ bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) new_bounds = apply_ras_bounds(bounds, ras_row) new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) pass def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: """ Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. Args: model (cobra.Model): The metabolic model for which bounds will be generated. medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. Returns: pd.DataFrame: DataFrame containing the bounds of reactions in the model. """ rxns_ids = [rxn.id for rxn in model.reactions] # Set all reactions to zero in the medium for rxn_id, _ in model.medium.items(): model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) # Set medium conditions for reaction, value in medium.items(): if value is not None: model.reactions.get_by_id(reaction).lower_bound = -float(value) # Perform Flux Variability Analysis (FVA) on this medium df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) # Set FVA bounds for reaction in rxns_ids: model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) if ras is not None: Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) else: bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids)) newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) pass ############################# main ########################################### def main(args:List[str] = None) -> None: """ Initializes everything and sets the program in motion based on the fronted input arguments. Returns: None """ if not os.path.exists('ras_to_bounds'): os.makedirs('ras_to_bounds') global ARGS ARGS = process_args(args) if(ARGS.ras_selector == True): ras_file_list = ARGS.input_ras.split(",") ras_file_names = ARGS.name.split(",") if len(ras_file_names) != len(set(ras_file_names)): error_message = "Duplicated file names in the uploaded RAS matrices." warning(error_message) raise ValueError(error_message) pass ras_class_names = [] for file in ras_file_names: ras_class_names.append(file.rsplit(".", 1)[0]) ras_list = [] class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): ras = read_dataset(ras_matrix, "ras dataset") ras.replace("None", None, inplace=True) ras.set_index("Reactions", drop=True, inplace=True) ras = ras.T ras = ras.astype(float) #append class name to patient id (dataframe index) ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index] ras_list.append(ras) for patient_id in ras.index: class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] # Concatenate all ras DataFrames into a single DataFrame ras_combined = pd.concat(ras_list, axis=0) # Normalize the RAS values by max RAS ras_combined = ras_combined.div(ras_combined.max(axis=0)) ras_combined.dropna(axis=1, how='all', inplace=True) model_type :utils.Model = ARGS.model_selector if model_type is utils.Model.Custom: model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) else: model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) if(ARGS.medium_selector == "Custom"): medium = read_dataset(ARGS.medium, "medium dataset") medium.set_index(medium.columns[0], inplace=True) medium = medium.astype(float) medium = medium[medium.columns[0]].to_dict() else: df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") medium = df_mediums[[ARGS.medium_selector]] medium = medium[ARGS.medium_selector].to_dict() if(ARGS.ras_selector == True): generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_path) class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) else: generate_bounds(model, medium, output_folder=ARGS.output_path) pass ############################################################################## if __name__ == "__main__": main()