Mercurial > repos > bimib > cobraxy
view COBRAxy/custom_data_generator.py @ 9:7c01dab3e961 draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 18 Sep 2024 12:16:40 +0000 |
parents | 41f35c2f0c7b |
children | 20c30b1a032d |
line wrap: on
line source
import os import csv import cobra import pickle import argparse import pandas as pd import utils.general_utils as utils import utils.rule_parsing as rulesUtils from typing import Optional, Tuple, Union, Dict import utils.reaction_parsing as reactionUtils ARGS : argparse.Namespace def process_args() -> argparse.Namespace: """ Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. Args: args : Always obtained (in file) from sys.argv Returns: Namespace : An object containing the parsed arguments """ parser = argparse.ArgumentParser( usage = "%(prog)s [options]", description = "generate custom data from a given model") parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log") parser.add_argument("-id", "--input", type = str, required = True, help = "Input model") parser.add_argument("-mn", "--name", type = str, required = True, help = "Input model name") # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in parser.add_argument( "-of", "--output_format", # vvv I have to use .fromExt because enums in python are the plague and have been implemented by a chimpanzee. type = utils.FileFormat.fromExt, default = utils.FileFormat.PICKLE, choices = [utils.FileFormat.CSV, utils.FileFormat.PICKLE], # ^^^ Not all variants are valid here, otherwise list(utils.FileFormat) would be best. required = True, help = "Extension of all output files") argsNamespace = parser.parse_args() argsNamespace.out_dir = "result" # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection return argsNamespace ################################- INPUT DATA LOADING -################################ def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: """ Loads a custom model from a file, either in JSON or XML format. Args: file_path : The path to the file containing the custom model. ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. Raises: DataErr : if the file is in an invalid format or cannot be opened for whatever reason. Returns: cobra.Model : the model, if successfully opened. """ ext = ext if ext else file_path.ext try: if ext is utils.FileFormat.XML: return cobra.io.read_sbml_model(file_path.show()) if ext is utils.FileFormat.JSON: return cobra.io.load_json_model(file_path.show()) except Exception as e: raise utils.DataErr(file_path, e.__str__()) raise utils.DataErr(file_path, f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") ################################- DATA GENERATION -################################ ReactionId = str def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: """ Generates a dictionary mapping reaction ids to rules from the model. Args: model : the model to derive data from. asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. Returns: Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. Dict[ReactionId, str] : the generated dictionary of raw rules. """ # Is the below approach convoluted? yes # Ok but is it inefficient? probably # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) _ruleGetter = lambda reaction : reaction.gene_reaction_rule ruleExtractor = (lambda reaction : rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter return { reaction.id : ruleExtractor(reaction) for reaction in model.reactions if reaction.gene_reaction_rule } def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: """ Generates a dictionary mapping reaction ids to reaction formulas from the model. Args: model : the model to derive data from. asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. Returns: Dict[ReactionId, str] : the generated dictionary. """ unparsedReactions = { reaction.id : reaction.reaction for reaction in model.reactions if reaction.reaction } if not asParsed: return unparsedReactions return reactionUtils.create_reaction_dict(unparsedReactions) def get_medium(model:cobra.Model) -> pd.DataFrame: trueMedium=[] for r in model.reactions: positiveCoeff=0 for m in r.metabolites: if r.get_coefficient(m.id)>0: positiveCoeff=1; if (positiveCoeff==0 and r.lower_bound<0): trueMedium.append(r.id) df_medium = pd.DataFrame() df_medium["reaction"] = trueMedium return df_medium def generate_bounds(model:cobra.Model) -> pd.DataFrame: rxns = [] for reaction in model.reactions: rxns.append(reaction.id) bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) for reaction in model.reactions: bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] return bounds ###############################- FILE SAVING -################################ def save_as_csv(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: """ Saves any dictionary-shaped data in a .csv file created at the given file_path. Args: data : the data to be written to the file. file_path : the path to the .csv file. fieldNames : the names of the fields (columns) in the .csv file. Returns: None """ with open(file_path.show(), 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames = fieldNames) writer.writeheader() for key, value in data.items(): writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) ###############################- ENTRY POINT -################################ def main() -> None: """ Initializes everything and sets the program in motion based on the fronted input arguments. Returns: None """ # get args from frontend (related xml) global ARGS ARGS = process_args() # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this! if os.path.isdir(ARGS.out_dir) == False: os.makedirs(ARGS.out_dir) # load custom model model = load_custom_model( utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) # generate data and save it in the desired format and in a location galaxy understands # (it should show up as a collection in the history) rulesPath = utils.FilePath("rules", ARGS.output_format, prefix = ARGS.out_dir) reactionsPath = utils.FilePath("reactions", ARGS.output_format, prefix = ARGS.out_dir) boundsPath = utils.FilePath("bounds", ARGS.output_format, prefix = ARGS.out_dir) mediumPath = utils.FilePath("medium", ARGS.output_format, prefix = ARGS.out_dir) if ARGS.output_format is utils.FileFormat.PICKLE: rules = generate_rules(model, asParsed = True) reactions = generate_reactions(model, asParsed = True) bounds = generate_bounds(model) medium = get_medium(model) utils.writePickle(rulesPath, rules) utils.writePickle(reactionsPath, reactions) utils.writePickle(boundsPath, bounds) utils.writePickle(mediumPath, medium) bounds.to_pickle(boundsPath.show()) medium.to_pickle(mediumPath.show()) elif ARGS.output_format is utils.FileFormat.CSV: rules = generate_rules(model, asParsed = False) reactions = generate_reactions(model, asParsed = False) bounds = generate_bounds(model) medium = get_medium(model) save_as_csv(rules, rulesPath, ("ReactionID", "Rule")) save_as_csv(reactions, reactionsPath, ("ReactionID", "Reaction")) bounds.to_csv(boundsPath.show()) medium.to_csv(mediumPath.show()) # ^ Please if anyone works on this after updating python to 3.12 change the if/elif into a match statement!! if __name__ == '__main__': main()