Mercurial > repos > bimib > cobraxy
view COBRAxy/ras_generator.py @ 45:95d67e76d647 draft
Uploaded
author | bimib |
---|---|
date | Tue, 08 Oct 2024 16:57:44 +0000 |
parents | 76924a2fd939 |
children | edc096339f0d |
line wrap: on
line source
from __future__ import division # galaxy complains this ^^^ needs to be at the very beginning of the file, for some reason. import sys import argparse import collections import pandas as pd import pickle as pk import utils.general_utils as utils import utils.rule_parsing as ruleUtils from typing import Union, Optional, List, Dict, Tuple, TypeVar ERRORS = [] ########################## argparse ########################################## ARGS :argparse.Namespace def process_args() -> argparse.Namespace: """ Processes command-line arguments. Args: args (list): List of command-line arguments. Returns: Namespace: An object containing parsed arguments. """ parser = argparse.ArgumentParser( usage = '%(prog)s [options]', description = "process some value's genes to create a comparison's map.") parser.add_argument( '-rs', '--rules_selector', type = utils.Model, default = utils.Model.HMRcore, choices = list(utils.Model), help = 'chose which type of dataset you want use') parser.add_argument("-rl", "--rule_list", type = str, help = "path to input file with custom rules, if provided") parser.add_argument("-rn", "--rules_name", type = str, help = "custom rules name") # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in parser.add_argument( '-n', '--none', type = utils.Bool("none"), default = True, help = 'compute Nan values') parser.add_argument( '-td', '--tool_dir', type = str, required = True, help = 'your tool directory') parser.add_argument( '-ol', '--out_log', type = str, help = "Output log") parser.add_argument( '-in', '--input', #id รจ diventato in type = str, help = 'input dataset') parser.add_argument( '-ra', '--ras_output', type = str, required = True, help = 'ras output') return parser.parse_args() ############################ dataset input #################################### def read_dataset(data :str, name :str) -> pd.DataFrame: """ Read a dataset from a CSV file and return it as a pandas DataFrame. Args: data (str): Path to the CSV file containing the dataset. name (str): Name of the dataset, used in error messages. Returns: pandas.DataFrame: DataFrame containing the dataset. Raises: pd.errors.EmptyDataError: If the CSV file is empty. sys.exit: If the CSV file has the wrong format, the execution is aborted. """ try: dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') except pd.errors.EmptyDataError: sys.exit('Execution aborted: wrong format of ' + name + '\n') if len(dataset.columns) < 2: sys.exit('Execution aborted: wrong format of ' + name + '\n') return dataset ############################ load id e rules ################################## def load_id_rules(reactions :Dict[str, Dict[str, List[str]]]) -> Tuple[List[str], List[Dict[str, List[str]]]]: """ Load IDs and rules from a dictionary of reactions. Args: reactions (dict): A dictionary where keys are IDs and values are rules. Returns: tuple: A tuple containing two lists, the first list containing IDs and the second list containing rules. """ ids, rules = [], [] for key, value in reactions.items(): ids.append(key) rules.append(value) return (ids, rules) ############################ check_methods #################################### def gene_type(l :str, name :str) -> str: """ Determine the type of gene ID. Args: l (str): The gene identifier to check. name (str): The name of the dataset, used in error messages. Returns: str: The type of gene ID ('hugo_id', 'ensembl_gene_id', 'symbol', or 'entrez_id'). Raises: sys.exit: If the gene ID type is not supported, the execution is aborted. """ if check_hgnc(l): return 'hugo_id' elif check_ensembl(l): return 'ensembl_gene_id' elif check_symbol(l): return 'symbol' elif check_entrez(l): return 'entrez_id' else: sys.exit('Execution aborted:\n' + 'gene ID type in ' + name + ' not supported. Supported ID'+ 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') def check_hgnc(l :str) -> bool: """ Check if a gene identifier follows the HGNC format. Args: l (str): The gene identifier to check. Returns: bool: True if the gene identifier follows the HGNC format, False otherwise. """ if len(l) > 5: if (l.upper()).startswith('HGNC:'): return l[5:].isdigit() else: return False else: return False def check_ensembl(l :str) -> bool: """ Check if a gene identifier follows the Ensembl format. Args: l (str): The gene identifier to check. Returns: bool: True if the gene identifier follows the Ensembl format, False otherwise. """ return l.upper().startswith('ENS') def check_symbol(l :str) -> bool: """ Check if a gene identifier follows the symbol format. Args: l (str): The gene identifier to check. Returns: bool: True if the gene identifier follows the symbol format, False otherwise. """ if len(l) > 0: if l[0].isalpha() and l[1:].isalnum(): return True else: return False else: return False def check_entrez(l :str) -> bool: """ Check if a gene identifier follows the Entrez ID format. Args: l (str): The gene identifier to check. Returns: bool: True if the gene identifier follows the Entrez ID format, False otherwise. """ if len(l) > 0: return l.isdigit() else: return False ############################ gene ############################################# def data_gene(gene: pd.DataFrame, type_gene: str, name: str, gene_custom: Optional[Dict[str, str]]) -> Dict[str, str]: """ Process gene data to ensure correct formatting and handle duplicates. Args: gene (DataFrame): DataFrame containing gene data. type_gene (str): Type of gene data (e.g., 'hugo_id', 'ensembl_gene_id', 'symbol', 'entrez_id'). name (str): Name of the dataset. gene_custom (dict or None): Custom gene data dictionary if provided. Returns: dict: A dictionary containing gene data with gene IDs as keys and corresponding values. """ args = process_args() for i in range(len(gene)): tmp = gene.iloc[i, 0] gene.iloc[i, 0] = tmp.strip().split('.')[0] gene_dup = [item for item, count in collections.Counter(gene[gene.columns[0]]).items() if count > 1] pat_dup = [item for item, count in collections.Counter(list(gene.columns)).items() if count > 1] if gene_dup: if gene_custom == None: if args.rules_selector == 'HMRcore': gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/HMRcore_genes.p', 'rb')) elif args.rules_selector == 'Recon': gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/Recon_genes.p', 'rb')) elif args.rules_selector == 'ENGRO2': gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/ENGRO2_genes.p', 'rb')) print(args.rules_selector) gene_in_rule = gene_in_rule.get(type_gene) else: gene_in_rule = gene_custom tmp = [] for i in gene_dup: if gene_in_rule.get(i) == 'ok': tmp.append(i) if tmp: sys.exit('Execution aborted because gene ID ' +str(tmp)+' in '+name+' is duplicated\n') if pat_dup: utils.logWarning(f"Warning: duplicated label\n{pat_dup} in {name}", ARGS.out_log) return (gene.set_index(gene.columns[0])).to_dict() ############################ resolve ########################################## def replace_gene_value(l :str, d :str) -> Tuple[Union[int, float], list]: """ Replace gene identifiers with corresponding values from a dictionary. Args: l (str): String of gene identifier. d (str): String corresponding to its value. Returns: tuple: A tuple containing two lists: the first list contains replaced values, and the second list contains any errors encountered during replacement. """ tmp = [] err = [] while l: if isinstance(l[0], list): tmp_rules, tmp_err = replace_gene_value(l[0], d) tmp.append(tmp_rules) err.extend(tmp_err) else: value = replace_gene(l[0], d) tmp.append(value) if value == None: err.append(l[0]) l = l[1:] return (tmp, err) def replace_gene(l :str, d :str) -> Union[int, float]: """ Replace a single gene identifier with its corresponding value from a dictionary. Args: l (str): Gene identifier to replace. d (str): String corresponding to its value. Returns: float/int: Corresponding value from the dictionary if found, None otherwise. Raises: sys.exit: If the value associated with the gene identifier is not valid. """ if l =='and' or l == 'or': return l else: value = d.get(l, None) if not(value == None or isinstance(value, (int, float))): sys.exit('Execution aborted: ' + value + ' value not valid\n') return value T = TypeVar("T", bound = Optional[Union[int, float]]) def computes(val1 :T, op :str, val2 :T, cn :bool) -> T: """ Compute the RAS value between two value and an operator ('and' or 'or'). Args: val1(Optional(Union[float, int])): First value. op (str): Operator ('and' or 'or'). val2(Optional(Union[float, int])): Second value. cn (bool): Control boolean value. Returns: Optional(Union[float, int]): Result of the computation. """ if val1 != None and val2 != None: if op == 'and': return min(val1, val2) else: return val1 + val2 elif op == 'and': if cn is True: if val1 != None: return val1 elif val2 != None: return val2 else: return None else: return None else: if val1 != None: return val1 elif val2 != None: return val2 else: return None # ris should be Literal[None] but Literal is not supported in Python 3.7 def control(ris, l :List[Union[int, float, list]], cn :bool) -> Union[bool, int, float]: #Union[Literal[False], int, float]: """ Control the format of the expression. Args: ris: Intermediate result. l (list): Expression to control. cn (bool): Control boolean value. Returns: Union[Literal[False], int, float]: Result of the control. """ if len(l) == 1: if isinstance(l[0], (float, int)) or l[0] == None: return l[0] elif isinstance(l[0], list): return control(None, l[0], cn) else: return False elif len(l) > 2: return control_list(ris, l, cn) else: return False def control_list(ris, l :List[Optional[Union[float, int, list]]], cn :bool) -> Optional[bool]: #Optional[Literal[False]]: """ Control the format of a list of expressions. Args: ris: Intermediate result. l (list): List of expressions to control. cn (bool): Control boolean value. Returns: Optional[Literal[False]]: Result of the control. """ while l: if len(l) == 1: return False elif (isinstance(l[0], (float, int)) or l[0] == None) and l[1] in ['and', 'or']: if isinstance(l[2], (float, int)) or l[2] == None: ris = computes(l[0], l[1], l[2], cn) elif isinstance(l[2], list): tmp = control(None, l[2], cn) if tmp is False: return False else: ris = computes(l[0], l[1], tmp, cn) else: return False l = l[3:] elif l[0] in ['and', 'or']: if isinstance(l[1], (float, int)) or l[1] == None: ris = computes(ris, l[0], l[1], cn) elif isinstance(l[1], list): tmp = control(None,l[1], cn) if tmp is False: return False else: ris = computes(ris, l[0], tmp, cn) else: return False l = l[2:] elif isinstance(l[0], list) and l[1] in ['and', 'or']: if isinstance(l[2], (float, int)) or l[2] == None: tmp = control(None, l[0], cn) if tmp is False: return False else: ris = computes(tmp, l[1], l[2], cn) elif isinstance(l[2], list): tmp = control(None, l[0], cn) tmp2 = control(None, l[2], cn) if tmp is False or tmp2 is False: return False else: ris = computes(tmp, l[1], tmp2, cn) else: return False l = l[3:] else: return False return ris ResolvedRules = Dict[str, List[Optional[Union[float, int]]]] def resolve(genes: Dict[str, str], rules: List[str], ids: List[str], resolve_none: bool, name: str) -> Tuple[Optional[ResolvedRules], Optional[list]]: """ Resolve rules using gene data to compute scores for each rule. Args: genes (dict): Dictionary containing gene data with gene IDs as keys and corresponding values. rules (list): List of rules to resolve. ids (list): List of IDs corresponding to the rules. resolve_none (bool): Flag indicating whether to resolve None values in the rules. name (str): Name of the dataset. Returns: tuple: A tuple containing resolved rules as a dictionary and a list of gene IDs not found in the data. """ resolve_rules = {} not_found = [] flag = False for key, value in genes.items(): tmp_resolve = [] for i in range(len(rules)): tmp = rules[i] if tmp: tmp, err = replace_gene_value(tmp, value) if err: not_found.extend(err) ris = control(None, tmp, resolve_none) if ris is False or ris == None: tmp_resolve.append(None) else: tmp_resolve.append(ris) flag = True else: tmp_resolve.append(None) resolve_rules[key] = tmp_resolve if flag is False: utils.logWarning( f"Warning: no computable score (due to missing gene values) for class {name}, the class has been disregarded", ARGS.out_log) return (None, None) return (resolve_rules, list(set(not_found))) ############################ create_ras ####################################### def create_ras(resolve_rules: Optional[ResolvedRules], dataset_name: str, rules: List[str], ids: List[str], file: str) -> None: """ Create a RAS (Reaction Activity Score) file from resolved rules. Args: resolve_rules (dict): Dictionary containing resolved rules. dataset_name (str): Name of the dataset. rules (list): List of rules. file (str): Path to the output RAS file. Returns: None """ if resolve_rules is None: utils.logWarning(f"Couldn't generate RAS for current dataset: {dataset_name}", ARGS.out_log) for geni in resolve_rules.values(): for i, valori in enumerate(geni): if valori == None: geni[i] = 'None' output_ras = pd.DataFrame.from_dict(resolve_rules) output_ras.insert(0, 'Reactions', ids) output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) text_file = open(file, "w") text_file.write(output_to_csv) text_file.close() ################################- NEW RAS COMPUTATION -################################ Expr = Optional[Union[int, float]] Ras = Expr def ras_for_cell_lines(dataset: pd.DataFrame, rules: Dict[str, ruleUtils.OpList]) -> Dict[str, Dict[str, Ras]]: """ Generates the RAS scores for each cell line found in the dataset. Args: dataset (pd.DataFrame): Dataset containing gene values. rules (dict): The dict containing reaction ids as keys and rules as values. Side effects: dataset : mut Returns: dict: A dictionary where each key corresponds to a cell line name and each value is a dictionary where each key corresponds to a reaction ID and each value is its computed RAS score. """ ras_values_by_cell_line = {} dataset.set_index(dataset.columns[0], inplace=True) # Considera tutte le colonne tranne la prima in cui ci sono gli hugo quindi va scartata for cell_line_name in dataset.columns[1:]: cell_line = dataset[cell_line_name].to_dict() ras_values_by_cell_line[cell_line_name]= get_ras_values(rules, cell_line) return ras_values_by_cell_line def get_ras_values(value_rules: Dict[str, ruleUtils.OpList], dataset: Dict[str, Expr]) -> Dict[str, Ras]: """ Computes the RAS (Reaction Activity Score) values for each rule in the given dict. Args: value_rules (dict): A dictionary where keys are reaction ids and values are OpLists. dataset : gene expression data of one cell line. Returns: dict: A dictionary where keys are reaction ids and values are the computed RAS values for each rule. """ return {key: ras_op_list(op_list, dataset) for key, op_list in value_rules.items()} def get_gene_expr(dataset :Dict[str, Expr], name :str) -> Expr: """ Extracts the gene expression of the given gene from a cell line dataset. Args: dataset : gene expression data of one cell line. name : gene name. Returns: Expr : the gene's expression value. """ expr = dataset.get(name, None) if expr is None: ERRORS.append(name) return expr def ras_op_list(op_list: ruleUtils.OpList, dataset: Dict[str, Expr]) -> Ras: """ Computes recursively the RAS (Reaction Activity Score) value for the given OpList, considering the specified flag to control None behavior. Args: op_list (OpList): The OpList representing a rule with gene values. dataset : gene expression data of one cell line. Returns: Ras: The computed RAS value for the given OpList. """ op = op_list.op ras_value :Ras = None if not op: return get_gene_expr(dataset, op_list[0]) if op is ruleUtils.RuleOp.AND and not ARGS.none and None in op_list: return None for i in range(len(op_list)): item = op_list[i] if isinstance(item, ruleUtils.OpList): item = ras_op_list(item, dataset) else: item = get_gene_expr(dataset, item) if item is None: if op is ruleUtils.RuleOp.AND and not ARGS.none: return None continue if ras_value is None: ras_value = item else: ras_value = ras_value + item if op is ruleUtils.RuleOp.OR else min(ras_value, item) return ras_value def save_as_tsv(rasScores: Dict[str, Dict[str, Ras]], reactions :List[str]) -> None: """ Save computed ras scores to the given path, as a tsv file. Args: rasScores : the computed ras scores. path : the output tsv file's path. Returns: None """ for scores in rasScores.values(): # this is actually a lot faster than using the ootb dataframe metod, sadly for reactId, score in scores.items(): if score is None: scores[reactId] = "None" output_ras = pd.DataFrame.from_dict(rasScores) output_ras.insert(0, 'Reactions', reactions) output_ras.to_csv(ARGS.ras_output, sep = '\t', index = False) ############################ MAIN ############################################# #TODO: not used but keep, it will be when the new translator dicts will be used. def translateGene(geneName :str, encoding :str, geneTranslator :Dict[str, Dict[str, str]]) -> str: """ Translate gene from any supported encoding to HugoID. Args: geneName (str): the name of the gene in its current encoding. encoding (str): the encoding. geneTranslator (Dict[str, Dict[str, str]]): the dict containing all supported gene names and encodings in the current model, mapping each to the corresponding HugoID encoding. Raises: ValueError: When the gene isn't supported in the model. Returns: str: the gene in HugoID encoding. """ supportedGenesInEncoding = geneTranslator[encoding] if geneName in supportedGenesInEncoding: return supportedGenesInEncoding[geneName] raise ValueError(f"Gene \"{geneName}\" non trovato, verifica di star utilizzando il modello corretto!") def load_custom_rules() -> Dict[str, ruleUtils.OpList]: """ Opens custom rules file and extracts the rules. If the file is in .csv format an additional parsing step will be performed, significantly impacting the runtime. Returns: Dict[str, ruleUtils.OpList] : dict mapping reaction IDs to rules. """ datFilePath = utils.FilePath.fromStrPath(ARGS.rule_list) # actual file, stored in galaxy as a .dat try: filenamePath = utils.FilePath.fromStrPath(ARGS.rules_name) # file's name in input, to determine its original ext except utils.PathErr as err: raise utils.PathErr(filenamePath, f"Please make sure your file's name is a valid file path, {err.msg}") if filenamePath.ext is utils.FileFormat.PICKLE: return utils.readPickle(datFilePath) # csv rules need to be parsed, those in a pickle format are taken to be pre-parsed. return { line[0] : ruleUtils.parseRuleToNestedList(line[1]) for line in utils.readCsv(datFilePath) } def main() -> None: """ Initializes everything and sets the program in motion based on the fronted input arguments. Returns: None """ # get args from frontend (related xml) global ARGS ARGS = process_args() print(ARGS.rules_selector) # read dataset dataset = read_dataset(ARGS.input, "dataset") dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) # remove versioning from gene names dataset.iloc[:, 0] = dataset.iloc[:, 0].str.split('.').str[0] # handle custom models model :utils.Model = ARGS.rules_selector if model is utils.Model.Custom: rules = load_custom_rules() reactions = list(rules.keys()) save_as_tsv(ras_for_cell_lines(dataset, rules), reactions) if ERRORS: utils.logWarning( f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}", ARGS.out_log) return # This is the standard flow of the ras_generator program, for non-custom models. name = "RAS Dataset" type_gene = gene_type(dataset.iloc[0, 0], name) rules = model.getRules(ARGS.tool_dir) genes = data_gene(dataset, type_gene, name, None) ids, rules = load_id_rules(rules.get(type_gene)) resolve_rules, err = resolve(genes, rules, ids, ARGS.none, name) create_ras(resolve_rules, name, rules, ids, ARGS.ras_output) if err: utils.logWarning( f"Warning: gene(s) {err} not found in class \"{name}\", " + "the expression level for this gene will be considered NaN", ARGS.out_log) print("Execution succeded") ############################################################################### if __name__ == "__main__": main()