Mercurial > repos > bimib > cobraxy
view COBRAxy/flux_simulation.py @ 216:b162b98f9de5 draft
Uploaded
author | luca_milaz |
---|---|
date | Fri, 13 Dec 2024 18:46:12 +0000 (5 weeks ago) |
parents | 3ca179b83574 |
children |
line wrap: on
line source
import argparse import utils.general_utils as utils from typing import Optional, List import os import numpy as np import pandas as pd import cobra import utils.CBS_backend as CBS_backend from joblib import Parallel, delayed, cpu_count from cobra.sampling import OptGPSampler import sys ################################# process args ############################### def process_args(args :List[str] = None) -> argparse.Namespace: """ Processes command-line arguments. Args: args (list): List of command-line arguments. Returns: Namespace: An object containing parsed arguments. """ parser = argparse.ArgumentParser(usage = '%(prog)s [options]', description = 'process some value\'s') parser.add_argument('-ol', '--out_log', help = "Output log") parser.add_argument('-td', '--tool_dir', type = str, required = True, help = 'your tool directory') parser.add_argument('-in', '--input', required = True, type=str, help = 'inputs bounds') parser.add_argument('-ni', '--names', required = True, type=str, help = 'cell names') parser.add_argument( '-ms', '--model_selector', type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], help = 'chose which type of model you want use') parser.add_argument("-mo", "--model", type = str) parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") parser.add_argument('-a', '--algorithm', type = str, choices = ['OPTGP', 'CBS'], required = True, help = 'choose sampling algorithm') parser.add_argument('-th', '--thinning', type = int, default= 100, required=False, help = 'choose thinning') parser.add_argument('-ns', '--n_samples', type = int, required = True, help = 'choose how many samples') parser.add_argument('-sd', '--seed', type = int, required = True, help = 'seed') parser.add_argument('-nb', '--n_batches', type = int, required = True, help = 'choose how many batches') parser.add_argument('-ot', '--output_type', type = str, required = True, help = 'output type') parser.add_argument('-ota', '--output_type_analysis', type = str, required = False, help = 'output type analysis') parser.add_argument('-idop', '--output_path', type = str, default='flux_simulation', help = 'output path for maps') ARGS = parser.parse_args(args) return ARGS ########################### warning ########################################### def warning(s :str) -> None: """ Log a warning message to an output log file and print it to the console. Args: s (str): The warning message to be logged and printed. Returns: None """ with open(ARGS.out_log, 'a') as log: log.write(s + "\n\n") print(s) def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None: dataset.index.name = 'Reactions' dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index) ############################ dataset input #################################### def read_dataset(data :str, name :str) -> pd.DataFrame: """ Read a dataset from a CSV file and return it as a pandas DataFrame. Args: data (str): Path to the CSV file containing the dataset. name (str): Name of the dataset, used in error messages. Returns: pandas.DataFrame: DataFrame containing the dataset. Raises: pd.errors.EmptyDataError: If the CSV file is empty. sys.exit: If the CSV file has the wrong format, the execution is aborted. """ try: dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') except pd.errors.EmptyDataError: sys.exit('Execution aborted: wrong format of ' + name + '\n') if len(dataset.columns) < 2: sys.exit('Execution aborted: wrong format of ' + name + '\n') return dataset def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None: """ Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. Args: model (cobra.Model): The COBRA model to sample from. model_name (str): The name of the model, used in naming output files. n_samples (int, optional): Number of samples per batch. Default is 1000. thinning (int, optional): Thinning parameter for the sampler. Default is 100. n_batches (int, optional): Number of batches to run. Default is 1. seed (int, optional): Random seed for reproducibility. Default is 0. Returns: None """ for i in range(0, n_batches): optgp = OptGPSampler(model, thinning, seed) samples = optgp.sample(n_samples) samples.to_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv', index=False) seed+=1 samplesTotal = pd.DataFrame() for i in range(0, n_batches): samples_batch = pd.read_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv') samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) write_to_file(samplesTotal.T, model_name, True) for i in range(0, n_batches): os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv') pass def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None: """ Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. Args: model (cobra.Model): The COBRA model to sample from. model_name (str): The name of the model, used in naming output files. n_samples (int, optional): Number of samples per batch. Default is 1000. n_batches (int, optional): Number of batches to run. Default is 1. seed (int, optional): Random seed for reproducibility. Default is 0. Returns: None """ df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6) df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed) for i in range(0, n_batches): samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples)) try: CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) except Exception as e: utils.logWarning( "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e), ARGS.out_log) CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) utils.logWarning(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log) samples.to_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv', index=False) samplesTotal = pd.DataFrame() for i in range(0, n_batches): samples_batch = pd.read_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv') samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) write_to_file(samplesTotal.T, model_name, True) for i in range(0, n_batches): os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv') pass def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]: """ Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm. Args: model_input_original (cobra.Model): The original COBRA model. bounds_path (str): Path to the CSV file containing the bounds dataset. cell_name (str): Name of the cell, used to generate filenames for output. Returns: List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. """ model_input = model_input_original.copy() bounds_df = read_dataset(bounds_path, "bounds dataset") for rxn_index, row in bounds_df.iterrows(): model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound if ARGS.algorithm == 'OPTGP': OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) elif ARGS.algorithm == 'CBS': CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) if("fluxes" not in ARGS.output_types): os.remove(ARGS.output_path + "/" + cell_name + '.csv') returnList = [] returnList.append(df_mean) returnList.append(df_median) returnList.append(df_quantiles) df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) if("pFBA" in ARGS.output_type_analysis): returnList.append(df_pFBA) if("FVA" in ARGS.output_type_analysis): returnList.append(df_FVA) if("sensitivity" in ARGS.output_type_analysis): returnList.append(df_sensitivity) return returnList def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]: """ Computes statistics (mean, median, quantiles) for the fluxes. Args: model_name (str): Name of the model, used in filename for input. output_types (List[str]): Types of statistics to compute (mean, median, quantiles). Returns: List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. """ df_mean = pd.DataFrame() df_median= pd.DataFrame() df_quantiles= pd.DataFrame() df_samples = pd.read_csv(ARGS.output_path + "/" + model_name + '.csv', sep = '\t', index_col = 0).T df_samples = df_samples.round(8) for output_type in output_types: if(output_type == "mean"): df_mean = df_samples.mean() df_mean = df_mean.to_frame().T df_mean = df_mean.reset_index(drop=True) df_mean.index = [model_name] elif(output_type == "median"): df_median = df_samples.median() df_median = df_median.to_frame().T df_median = df_median.reset_index(drop=True) df_median.index = [model_name] elif(output_type == "quantiles"): newRow = [] cols = [] for rxn in df_samples.columns: quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) newRow.append(quantiles[0.25]) cols.append(rxn + "_q1") newRow.append(quantiles[0.5]) cols.append(rxn + "_q2") newRow.append(quantiles[0.75]) cols.append(rxn + "_q3") df_quantiles = pd.DataFrame(columns=cols) df_quantiles.loc[0] = newRow df_quantiles = df_quantiles.reset_index(drop=True) df_quantiles.index = [model_name] return df_mean, df_median, df_quantiles def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]: """ Performs flux analysis including pFBA, FVA, and sensitivity analysis. Args: model (cobra.Model): The COBRA model to analyze. model_name (str): Name of the model, used in filenames for output. output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). Returns: List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. """ df_pFBA = pd.DataFrame() df_FVA= pd.DataFrame() df_sensitivity= pd.DataFrame() for output_type in output_types: if(output_type == "pFBA"): model.objective = "Biomass" solution = cobra.flux_analysis.pfba(model) fluxes = solution.fluxes df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist() df_pFBA = df_pFBA.reset_index(drop=True) df_pFBA.index = [model_name] df_pFBA = df_pFBA.astype(float).round(6) elif(output_type == "FVA"): fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) columns = [] for rxn in fva.index.to_list(): columns.append(rxn + "_min") columns.append(rxn + "_max") df_FVA= pd.DataFrame(columns = columns) for index_rxn, row in fva.iterrows(): df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] df_FVA = df_FVA.reset_index(drop=True) df_FVA.index = [model_name] df_FVA = df_FVA.astype(float).round(6) elif(output_type == "sensitivity"): model.objective = "Biomass" solution_original = model.optimize().objective_value reactions = model.reactions single = cobra.flux_analysis.single_reaction_deletion(model) newRow = [] df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) for rxn in reactions: newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) df_sensitivity.loc[model_name] = newRow df_sensitivity = df_sensitivity.astype(float).round(6) return df_pFBA, df_FVA, df_sensitivity ############################# main ########################################### def main(args :List[str] = None) -> None: """ Initializes everything and sets the program in motion based on the fronted input arguments. Returns: None """ num_processors = cpu_count() global ARGS ARGS = process_args(args) if not os.path.exists(ARGS.output_path): os.makedirs(ARGS.output_path) model_type :utils.Model = ARGS.model_selector if model_type is utils.Model.Custom: model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) else: model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) ARGS.bounds = ARGS.input.split(",") ARGS.bounds_name = ARGS.names.split(",") ARGS.output_types = ARGS.output_type.split(",") ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name)) all_mean = pd.concat([result[0] for result in results], ignore_index=False) all_median = pd.concat([result[1] for result in results], ignore_index=False) all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) if("mean" in ARGS.output_types): all_mean = all_mean.fillna(0.0) all_mean = all_mean.sort_index() write_to_file(all_mean.T, "mean", True) if("median" in ARGS.output_types): all_median = all_median.fillna(0.0) all_median = all_median.sort_index() write_to_file(all_median.T, "median", True) if("quantiles" in ARGS.output_types): all_quantiles = all_quantiles.fillna(0.0) all_quantiles = all_quantiles.sort_index() write_to_file(all_quantiles.T, "quantiles", True) index_result = 3 if("pFBA" in ARGS.output_type_analysis): all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) all_pFBA = all_pFBA.sort_index() write_to_file(all_pFBA.T, "pFBA", True) index_result+=1 if("FVA" in ARGS.output_type_analysis): all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False) all_FVA = all_FVA.sort_index() write_to_file(all_FVA.T, "FVA", True) index_result+=1 if("sensitivity" in ARGS.output_type_analysis): all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) all_sensitivity = all_sensitivity.sort_index() write_to_file(all_sensitivity.T, "sensitivity", True) pass ############################################################################## if __name__ == "__main__": main()