# HG changeset patch # User luca_milaz # Date 1731951282 0 # Node ID fa981714e87d41ecfe83e38a1bb5b65e920a988e # Parent eefe693b2fdd4ced5950d57e5710e1d64391ac1b Uploaded diff -r eefe693b2fdd -r fa981714e87d COBRAxy/flux_to_map.py --- a/COBRAxy/flux_to_map.py Mon Nov 18 17:24:19 2024 +0000 +++ b/COBRAxy/flux_to_map.py Mon Nov 18 17:34:42 2024 +0000 @@ -891,7 +891,7 @@ def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: """ Compute and visualize the metabolic map based on mean and median of the input fluxes. - The fluxes are normalized across classes/datasets and visualized using the given colormap. + The fluxes are normalised across classes/datasets and visualised using the given colormap. Args: metabMap (ET.ElementTree): An XML tree representing the metabolic map. @@ -907,17 +907,17 @@ # Compute medians and means medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()} - means = {key: np.round(np.mean(np.array(value), axis=1), 6) for key, value in class_pat.items()} + means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()} # Normalize medians and means max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) - min_flux_medians = min(np.min(arr) for arr in medians.values()) - min_flux_means = min(np.min(arr) for arr in means.values()) + min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) + min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) - max_flux_medians = max(np.max(arr) for arr in medians.values()) - max_flux_means = max(np.max(arr) for arr in means.values()) + medians = {key: median/max_flux_medians for key, median in medians.items()} + means = {key: mean/max_flux_means for key, mean in means.items()} save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) @@ -927,12 +927,12 @@ for key in class_pat: # Create color mappings for median and mean colors_median = { - rxn_id: rgb_to_hex(cmap((medians[key][i] - min_flux_medians) / (max_flux_medians - min_flux_medians))) if medians[key][i] != 0 else '#bebebe' #grey blocked + rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe' #grey blocked for i, rxn_id in enumerate(ids) } colors_mean = { - rxn_id: rgb_to_hex(cmap((means[key][i] - min_flux_means) / (max_flux_means - min_flux_means))) if means[key][i] != 0 else '#bebebe' #grey blocked + rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe' #grey blocked for i, rxn_id in enumerate(ids) }