Mercurial > repos > bimib > cobraxy
changeset 151:8e3cbf68cdc4 draft
Uploaded
author | luca_milaz |
---|---|
date | Wed, 06 Nov 2024 21:02:00 +0000 |
parents | 834009d1a094 |
children | 7f3552eaf774 |
files | COBRAxy/flux_to_map.py COBRAxy/marea.py flux_to_map.py |
diffstat | 3 files changed, 6 insertions(+), 1059 deletions(-) [+] |
line wrap: on
line diff
--- a/COBRAxy/flux_to_map.py Wed Nov 06 21:00:17 2024 +0000 +++ b/COBRAxy/flux_to_map.py Wed Nov 06 21:02:00 2024 +0000 @@ -733,13 +733,12 @@ return tmp, max_z_score -def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: +def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: """ Compares clustered data based on a given comparison mode and applies enrichment-based styling on the provided metabolic map. Args: - metabMap : SVG map to modify. class_pat : the clustered data. ids : ids for data association. @@ -749,10 +748,7 @@ Raises: sys.exit : if there are less than 2 classes for comparison - - Side effects: - metabMap : mut - ids : mut + """ class_pat = { k.strip() : v for k, v in class_pat.items() } #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) @@ -765,8 +761,6 @@ for i, j in it.combinations(class_pat.keys(), 2): comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) enrichment_results.append((i, j, comparisonDict, max_z_score)) - - elif ARGS.comparison == "onevsrest": for single_cluster in class_pat.keys(): @@ -1030,7 +1024,7 @@ computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) - enrichment_results = computeEnrichment(core_map, class_pat, ids) + enrichment_results = computeEnrichment(class_pat, ids) for i, j, comparisonDict, max_z_score in enrichment_results: map_copy = copy.deepcopy(core_map) temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j)
--- a/COBRAxy/marea.py Wed Nov 06 21:00:17 2024 +0000 +++ b/COBRAxy/marea.py Wed Nov 06 21:02:00 2024 +0000 @@ -768,13 +768,12 @@ return tmp, max_z_score -def computeEnrichment(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> List[Tuple[str, str, dict, float]]: +def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> List[Tuple[str, str, dict, float]]: """ Compares clustered data based on a given comparison mode and applies enrichment-based styling on the provided metabolic map. Args: - metabMap : SVG map to modify. class_pat : the clustered data. ids : ids for data association. fromRAS : whether the data to enrich consists of RAS scores. @@ -784,9 +783,6 @@ Raises: sys.exit : if there are less than 2 classes for comparison - - Side effects: - metabMap : mutates based on calculated enrichment """ class_pat = {k.strip(): v for k, v in class_pat.items()} if (not class_pat) or (len(class_pat.keys()) < 2): @@ -893,7 +889,7 @@ if ARGS.using_RAS: ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) - enrichment_results = computeEnrichment(core_map, class_pat, ids) + enrichment_results = computeEnrichment(class_pat, ids) for i, j, comparisonDict, max_z_score in enrichment_results: map_copy = copy.deepcopy(core_map) temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j, ras_enrichment=True) @@ -901,7 +897,7 @@ if ARGS.using_RPS: ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) - enrichment_results = computeEnrichment(core_map, class_pat, ids, fromRAS=False) + enrichment_results = computeEnrichment(class_pat, ids, fromRAS=False) for i, j, comparisonDict, max_z_score in enrichment_results: map_copy = copy.deepcopy(core_map) temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j, ras_enrichment=False)
--- a/flux_to_map.py Wed Nov 06 21:00:17 2024 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1043 +0,0 @@ -from __future__ import division -import csv -from enum import Enum -import re -import sys -import numpy as np -import pandas as pd -import itertools as it -import scipy.stats as st -import lxml.etree as ET -import math -import utils.general_utils as utils -from PIL import Image -import os -import copy -import argparse -import pyvips -from PIL import Image, ImageDraw, ImageFont -from typing import Tuple, Union, Optional, List, Dict -import matplotlib.pyplot as plt - -ERRORS = [] -########################## argparse ########################################## -ARGS :argparse.Namespace -def process_args(args:List[str] = None) -> argparse.Namespace: - """ - Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. - - Args: - args : Always obtained (in file) from sys.argv - - Returns: - Namespace : An object containing the parsed arguments - """ - parser = argparse.ArgumentParser( - usage = "%(prog)s [options]", - description = "process some value's genes to create a comparison's map.") - - #General: - parser.add_argument( - '-td', '--tool_dir', - type = str, - required = True, - help = 'your tool directory') - - parser.add_argument('-on', '--control', type = str) - parser.add_argument('-ol', '--out_log', help = "Output log") - - #Computation details: - parser.add_argument( - '-co', '--comparison', - type = str, - default = '1vs1', - choices = ['manyvsmany', 'onevsrest', 'onevsmany']) - - parser.add_argument( - '-pv' ,'--pValue', - type = float, - default = 0.1, - help = 'P-Value threshold (default: %(default)s)') - - parser.add_argument( - '-fc', '--fChange', - type = float, - default = 1.5, - help = 'Fold-Change threshold (default: %(default)s)') - - - parser.add_argument( - '-op', '--option', - type = str, - choices = ['datasets', 'dataset_class'], - help='dataset or dataset and class') - - parser.add_argument( - '-idf', '--input_data_fluxes', - type = str, - help = 'input dataset fluxes') - - parser.add_argument( - '-icf', '--input_class_fluxes', - type = str, - help = 'sample group specification fluxes') - - parser.add_argument( - '-idsf', '--input_datas_fluxes', - type = str, - nargs = '+', - help = 'input datasets fluxes') - - parser.add_argument( - '-naf', '--names_fluxes', - type = str, - nargs = '+', - help = 'input names fluxes') - - #Output: - parser.add_argument( - "-gs", "--generate_svg", - type = utils.Bool("generate_svg"), default = True, - help = "choose whether to generate svg") - - parser.add_argument( - "-gp", "--generate_pdf", - type = utils.Bool("generate_pdf"), default = True, - help = "choose whether to generate pdf") - - parser.add_argument( - '-cm', '--custom_map', - type = str, - help='custom map to use') - - parser.add_argument( - '-mc', '--choice_map', - type = utils.Model, default = utils.Model.HMRcore, - choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) - - parser.add_argument( - '-colorm', '--color_map', - type = str, - choices = ["jet", "viridis"]) - - parser.add_argument( - '-idop', '--output_path', - type = str, - default='result', - help = 'output path for maps') - - args :argparse.Namespace = parser.parse_args(args) - args.net = True - - return args - -############################ dataset input #################################### -def read_dataset(data :str, name :str) -> pd.DataFrame: - """ - Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. - - Args: - data : filepath of a dataset (from frontend input params or literals upon calling) - name : name associated with the dataset (from frontend input params or literals upon calling) - - Returns: - pd.DataFrame : dataset in a runtime operable shape - - Raises: - sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns - """ - try: - dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') - except pd.errors.EmptyDataError: - sys.exit('Execution aborted: wrong format of ' + name + '\n') - if len(dataset.columns) < 2: - sys.exit('Execution aborted: wrong format of ' + name + '\n') - return dataset - -############################ dataset name ##################################### -def name_dataset(name_data :str, count :int) -> str: - """ - Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. - - Args: - name_data : name associated with the dataset (from frontend input params) - count : counter from 1 to make these names unique (external) - - Returns: - str : the name made unique - """ - if str(name_data) == 'Dataset': - return str(name_data) + '_' + str(count) - else: - return str(name_data) - -############################ map_methods ###################################### -FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] -def fold_change(avg1 :float, avg2 :float) -> FoldChange: - """ - Calculates the fold change between two gene expression values. - - Args: - avg1 : average expression value from one dataset avg2 : average expression value from the other dataset - - Returns: - FoldChange : - 0 : when both input values are 0 - "-INF" : when avg1 is 0 - "INF" : when avg2 is 0 - float : for any other combination of values - """ - if avg1 == 0 and avg2 == 0: - return 0 - elif avg1 == 0: - return '-INF' - elif avg2 == 0: - return 'INF' - else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 - return (avg1 - avg2) / (abs(avg1) + abs(avg2)) - -def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: - """ - Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. - - Args: - l : current style string of an SVG element - col : new value for the "stroke" style property - width : new value for the "stroke-width" style property - dash : new value for the "stroke-dasharray" style property - - Returns: - str : the fixed style string - """ - tmp = l.split(';') - flag_col = False - flag_width = False - flag_dash = False - for i in range(len(tmp)): - if tmp[i].startswith('stroke:'): - tmp[i] = 'stroke:' + col - flag_col = True - if tmp[i].startswith('stroke-width:'): - tmp[i] = 'stroke-width:' + width - flag_width = True - if tmp[i].startswith('stroke-dasharray:'): - tmp[i] = 'stroke-dasharray:' + dash - flag_dash = True - if not flag_col: - tmp.append('stroke:' + col) - if not flag_width: - tmp.append('stroke-width:' + width) - if not flag_dash: - tmp.append('stroke-dasharray:' + dash) - return ';'.join(tmp) - -# The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! -def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: - """ - Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. - - Args: - d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) - core_map : SVG map to modify - threshold_P_V : threshold for a p-value to be considered significant - threshold_F_C : threshold for a fold change value to be considered significant - max_z_score : highest z-score (absolute value) - - Returns: - ET.ElementTree : the modified core_map - - Side effects: - core_map : mut - """ - maxT = 12 - minT = 2 - grey = '#BEBEBE' - blue = '#6495ed' - red = '#ecac68' - for el in core_map.iter(): - el_id = str(el.get('id')) - if el_id.startswith('R_'): - tmp = d.get(el_id[2:]) - if tmp != None: - p_val :float = tmp[0] - f_c = tmp[1] - z_score = tmp[2] - if p_val < threshold_P_V: - if not isinstance(f_c, str): - if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # - col = grey - width = str(minT) - else: - if f_c < 0: - col = blue - elif f_c > 0: - col = red - width = str(max((abs(z_score) * maxT) / max_z_score, minT)) - else: - if f_c == '-INF': - col = blue - elif f_c == 'INF': - col = red - width = str(maxT) - dash = 'none' - else: - dash = '5,5' - col = grey - width = str(minT) - el.set('style', fix_style(el.get('style', ""), col, width, dash)) - return core_map - -def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: - """ - Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but - not enforced, if more than one element with the exact ID is found only the first will be returned. - - Args: - reactionId (str): exact ID of the requested element. - metabMap (ET.ElementTree): metabolic map containing the element. - - Returns: - utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. - """ - return utils.Result.Ok( - f"//*[@id=\"{reactionId}\"]").map( - lambda xPath : metabMap.xpath(xPath)[0]).mapErr( - lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) - # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. - -def styleMapElement(element :ET.Element, styleStr :str) -> None: - currentStyles :str = element.get("style", "") - if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): - currentStyles = ';'.join(currentStyles.split(';')[:-3]) - - element.set("style", currentStyles + styleStr) - -class ReactionDirection(Enum): - Unknown = "" - Direct = "_F" - Inverse = "_B" - - @classmethod - def fromDir(cls, s :str) -> "ReactionDirection": - # vvv as long as there's so few variants I actually condone the if spam: - if s == ReactionDirection.Direct.value: return ReactionDirection.Direct - if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse - return ReactionDirection.Unknown - - @classmethod - def fromReactionId(cls, reactionId :str) -> "ReactionDirection": - return ReactionDirection.fromDir(reactionId[-2:]) - -def getArrowBodyElementId(reactionId :str) -> str: - if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV - elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] - return f"R_{reactionId}" - -def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: - """ - We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. - - Args: - reactionId : the provided reaction ID. - - Returns: - Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. - """ - if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV - elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" - return f"F_{reactionId}", f"B_{reactionId}" - -class ArrowColor(Enum): - """ - Encodes possible arrow colors based on their meaning in the enrichment process. - """ - Invalid = "#BEBEBE" # gray, fold-change under treshold - Transparent = "#ffffff00" # white, not significant p-value - UpRegulated = "#ecac68" # red, up-regulated reaction - DownRegulated = "#6495ed" # blue, down-regulated reaction - - UpRegulatedInv = "#FF0000" - # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with - # conflicting enrichment in the two directions. - - DownRegulatedInv = "#0000FF" - # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with - # conflicting enrichment in the two directions. - - @classmethod - def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": - colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) - return colors[useAltColor] - - def __str__(self) -> str: return self.value - -class Arrow: - """ - Models the properties of a reaction arrow that change based on enrichment. - """ - MIN_W = 2 - MAX_W = 12 - - def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: - """ - (Private) Initializes an instance of Arrow. - - Args: - width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). - col : color of the arrow. - isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. - - Returns: - None : practically, a Arrow instance. - """ - self.w = width - self.col = col - self.dash = isDashed - - def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: - if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: - ERRORS.append(reactionId) - - def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: - if not mindReactionDir: - return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) - - # Now we style the arrow head(s): - idOpt1, idOpt2 = getArrowHeadElementId(reactionId) - self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) - if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) - - def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: - - self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) - idOpt1, idOpt2 = getArrowHeadElementId(reactionId) - - if(isNegative): - self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) - self.col = ArrowColor.Transparent - self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp - else: - self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) - self.col = ArrowColor.Transparent - self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp - - - - def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: - """ - Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. - - Args: - reactionId: the reaction ID, as encoded in the dataset. - mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. - - Returns: - str : the ID of an arrow's body or tips in the map. - """ - # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. - if not mindReactionDir: return "R_" + reactionId - - #TODO: this is clearly something we need to make consistent in fluxes - return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" - - def toStyleStr(self, *, downSizedForTips = False) -> str: - """ - Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. - - Returns: - str : the styles string. - """ - width = self.w - if downSizedForTips: width *= 0.8 - return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" - -# vvv These constants could be inside the class itself a static properties, but python -# was built by brainless organisms so here we are! -INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) -INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) - -def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: - """ - Applies fluxes enrichment results to the provided metabolic map. - - Args: - fluxesEnrichmentRes : fluxes enrichment results. - metabMap : the metabolic map to edit. - maxNumericZScore : biggest finite z-score value found. - - Side effects: - metabMap : mut - - Returns: - None - """ - for reactionId, values in fluxesEnrichmentRes.items(): - pValue = values[0] - foldChange = values[1] - z_score = values[2] - - if isinstance(foldChange, str): foldChange = float(foldChange) - if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow - INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) - INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) - - continue - - if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): - INVALID_ARROW.styleReactionElements(metabMap, reactionId) - INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) - - continue - - width = Arrow.MAX_W - if not math.isinf(foldChange): - try: - width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) - - except ZeroDivisionError: pass - - #if not reactionId.endswith("_RV"): # RV stands for reversible reactions - # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) - # continue - - #reactionId = reactionId[:-3] # Remove "_RV" - - inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score - if inversionScore == 2: foldChange *= -1 - # ^^^ Style the inverse direction with the opposite sign netValue - - # If the score is 1 (opposite signs) we use alternative colors vvv - arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) - - # vvv These 2 if statements can both be true and can both happen - if ARGS.net: # style arrow head(s): - arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) - arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") - - arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) - - -############################ split class ###################################### -def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: - """ - Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. - - Args: - classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict - resolve_rules : a :dict containing :float data - - Returns: - dict : the dict with data grouped by class - - Side effects: - classes : mut - """ - class_pat :Dict[str, List[List[float]]] = {} - for i in range(len(classes)): - classe :str = classes.iloc[i, 1] - if pd.isnull(classe): continue - - l :List[List[float]] = [] - for j in range(i, len(classes)): - if classes.iloc[j, 1] == classe: - pat_id :str = classes.iloc[j, 0] - tmp = resolve_rules.get(pat_id, None) - if tmp != None: - l.append(tmp) - classes.iloc[j, 1] = None - - if l: - class_pat[classe] = list(map(list, zip(*l))) - continue - - utils.logWarning( - f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) - - return class_pat - -############################ conversion ############################################## -#conversion from svg to png -def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: - """ - Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. - - Args: - svg_path : path to SVG file - png_path : path for new PNG file - dpi : dots per inch of the generated PNG - scale : scaling factor for the generated PNG, computed internally when a size is provided - size : final effective width of the generated PNG - - Returns: - None - """ - if size: - image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) - scale = size / image.width - image = image.resize(scale) - else: - image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) - - white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) - white_background = white_background.affine([scale, 0, 0, scale]) - - if white_background.bands != image.bands: - white_background = white_background.extract_band(0) - - composite_image = white_background.composite2(image, 'over') - composite_image.write_to_file(png_path.show()) - -#funzione unica, lascio fuori i file e li passo in input -#conversion from png to pdf -def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: - """ - Internal utility to convert a PNG to PDF to aid from SVG conversion. - - Args: - png_file : path to PNG file - pdf_file : path to new PDF file - - Returns: - None - """ - image = Image.open(png_file.show()) - image = image.convert("RGB") - image.save(pdf_file.show(), "PDF", resolution=100.0) - -#function called to reduce redundancy in the code -def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: - """ - Converts the SVG map at the provided path to PDF. - - Args: - file_svg : path to SVG file - file_png : path to PNG file - file_pdf : path to new PDF file - - Returns: - None - """ - svg_to_png_with_background(file_svg, file_png) - try: - convert_png_to_pdf(file_png, file_pdf) - print(f'PDF file {file_pdf.filePath} successfully generated.') - - except Exception as e: - raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') - -############################ map ############################################## -def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: - """ - Builds a FilePath instance from the names of confronted datasets ready to point to a location in the - "result/" folder, used by this tool for output files in collections. - - Args: - dataset1Name : _description_ - dataset2Name : _description_. Defaults to "rest". - details : _description_ - ext : _description_ - - Returns: - utils.FilePath : _description_ - """ - # This function returns a util data structure but is extremely specific to this module. - # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait - # TODO: until a third tool with multiple outputs appears before porting this to utils. - return utils.FilePath( - f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), - # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in - # all output files: I don't care, this was never the performance bottleneck of the tool and - # there is no other net gain in saving and re-using the built string. - ext, - prefix = ARGS.output_path) - -FIELD_NOT_AVAILABLE = '/' -def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: - fieldsAmt = len(fieldNames) - with open(outPath.show(), "w", newline = "") as fd: - writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') - writer.writeheader() - - for row in rows: - sizeMismatch = fieldsAmt - len(row) - if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) - writer.writerow({ field : data for field, data in zip(fieldNames, row) }) - -OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible -def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: - fieldNames = ["ids", "P_Value", "fold change"] - fieldNames.extend(["average_1", "average_2"]) - - writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) - -def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: - # this function compiles the things always in common between comparison modes after enrichment. - # TODO: organize, name better. - writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) - for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) - applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) - -def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: - """ - Computes the statistical significance score (P-value) of the comparison between coherent data - from two datasets. The data is supposed to, in both datasets: - - be related to the same reaction ID; - - be ordered by sample, such that the item at position i in both lists is related to the - same sample or cell line. - - Args: - dataset1Data : data from the 1st dataset. - dataset2Data : data from the 2nd dataset. - - Returns: - tuple: (P-value, Z-score) - - P-value from a Kolmogorov-Smirnov test on the provided data. - - Z-score of the difference between means of the two datasets. - """ - # Perform Kolmogorov-Smirnov test - ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) - - # Calculate means and standard deviations - mean1 = np.mean(dataset1Data) - mean2 = np.mean(dataset2Data) - std1 = np.std(dataset1Data, ddof=1) - std2 = np.std(dataset2Data, ddof=1) - - n1 = len(dataset1Data) - n2 = len(dataset2Data) - - # Calculate Z-score - z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) - - return p_value, z_score - -def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: - #TODO: the following code still suffers from "dumbvarnames-osis" - tmp :Dict[str, List[Union[float, FoldChange]]] = {} - count = 0 - max_z_score = 0 - - for l1, l2 in zip(dataset1Data, dataset2Data): - reactId = ids[count] - count += 1 - if not reactId: continue # we skip ids that have already been processed - - try: - p_value, z_score = computePValue(l1, l2) - avg1 = sum(l1) / len(l1) - avg2 = sum(l2) / len(l2) - avg = fold_change(avg1, avg2) - if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) - tmp[reactId] = [float(p_value), avg, z_score, avg1, avg2] - except (TypeError, ZeroDivisionError): continue - - return tmp, max_z_score - -def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: - """ - Compares clustered data based on a given comparison mode and applies enrichment-based styling on the - provided metabolic map. - - Args: - class_pat : the clustered data. - ids : ids for data association. - - - Returns: - List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score. - - Raises: - sys.exit : if there are less than 2 classes for comparison - - """ - class_pat = { k.strip() : v for k, v in class_pat.items() } - #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) - if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') - - enrichment_results = [] - - - if ARGS.comparison == "manyvsmany": - for i, j in it.combinations(class_pat.keys(), 2): - comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) - enrichment_results.append((i, j, comparisonDict, max_z_score)) - - elif ARGS.comparison == "onevsrest": - for single_cluster in class_pat.keys(): - rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] - comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) - enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) - - elif ARGS.comparison == "onevsmany": - controlItems = class_pat.get(ARGS.control) - for otherDataset in class_pat.keys(): - if otherDataset == ARGS.control: - continue - comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) - enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) - return enrichment_results - -def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: - svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) - utils.writeSvg(svgFilePath, core_map) - - if ARGS.generate_pdf: - pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) - pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) - convert_to_pdf(svgFilePath, pngPath, pdfPath) - - if not ARGS.generate_svg: - os.remove(svgFilePath.show()) - -ClassPat = Dict[str, List[List[float]]] -def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: - # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, - # for the sake of everyone's sanity. - class_pat :ClassPat = {} - if ARGS.option == 'datasets': - num = 1 #TODO: the dataset naming function could be a generator - for path, name in zip(datasetsPaths, names): - name = name_dataset(name, num) - resolve_rules_float, ids = getDatasetValues(path, name) - if resolve_rules_float != None: - class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) - - num += 1 - - elif ARGS.option == "dataset_class": - classes = read_dataset(classPath, "class") - classes = classes.astype(str) - - resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") - if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) - - return ids, class_pat - #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) - -#TODO: create these damn args as FilePath objects -def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: - """ - Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. - - Args: - datasetPath : path to the dataset - datasetName (str): dataset name, used in error reporting - - Returns: - Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset - """ - dataset = read_dataset(datasetPath, datasetName) - IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) - - dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") - return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs - -def rgb_to_hex(rgb): - """ - Convert RGB values (0-1 range) to hexadecimal color format. - - Args: - rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). - - Returns: - str: The color in hexadecimal format (e.g., '#ff0000' for red). - """ - # Convert RGB values (0-1 range) to hexadecimal format - rgb = (np.array(rgb) * 255).astype(int) - return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) - - - -def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): - """ - Create and save an image of the colormap showing the gradient and its range. - - Args: - min_value (float): The minimum value of the colormap range. - max_value (float): The maximum value of the colormap range. - filename (str): The filename for saving the image. - """ - - # Create a colormap using matplotlib - cmap = plt.get_cmap(colorMap) - - # Create a figure and axis - fig, ax = plt.subplots(figsize=(6, 1)) - fig.subplots_adjust(bottom=0.5) - - # Create a gradient image - gradient = np.linspace(0, 1, 256) - gradient = np.vstack((gradient, gradient)) - - # Add min and max value annotations - ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') - ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') - - - # Display the gradient image - ax.imshow(gradient, aspect='auto', cmap=cmap) - ax.set_axis_off() - - # Save the image - plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) - plt.close() - pass - -def min_nonzero_abs(arr): - # Flatten the array and filter out zeros, then find the minimum of the remaining values - non_zero_elements = np.abs(arr)[np.abs(arr) > 0] - return np.min(non_zero_elements) if non_zero_elements.size > 0 else None - -def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: - """ - Compute and visualize the metabolic map based on mean and median of the input fluxes. - The fluxes are normalised across classes/datasets and visualised using the given colormap. - - Args: - metabMap (ET.ElementTree): An XML tree representing the metabolic map. - class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. - ids (List[str]): A list of reaction IDs to be used for coloring arrows. - - Returns: - None - """ - # Create copies only if they are needed - metabMap_mean = copy.deepcopy(metabMap) - metabMap_median = copy.deepcopy(metabMap) - - # Compute medians and means - medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()} - means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()} - - # Normalize medians and means - max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) - max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) - - min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) - min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) - - medians = {key: median/max_flux_medians for key, median in medians.items()} - means = {key: mean/max_flux_means for key, mean in means.items()} - - save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) - save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) - - cmap = plt.get_cmap(colormap) - - for key in class_pat: - # Create color mappings for median and mean - colors_median = { - rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe' #grey blocked - for i, rxn_id in enumerate(ids) - } - - colors_mean = { - rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe' #grey blocked - for i, rxn_id in enumerate(ids) - } - - for i, rxn_id in enumerate(ids): - isNegative = medians[key][i] < 0 - - # Apply median arrows - apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative) - - isNegative = means[key][i] < 0 - # Apply mean arrows - apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative) - - # Save and convert the SVG files - save_and_convert(metabMap_mean, "mean", key) - save_and_convert(metabMap_median, "median", key) - -def apply_arrow(metabMap, rxn_id, color, isNegative): - """ - Apply an arrow to a specific reaction in the metabolic map with a given color. - - Args: - metabMap (ET.ElementTree): An XML tree representing the metabolic map. - rxn_id (str): The ID of the reaction to which the arrow will be applied. - color (str): The color of the arrow in hexadecimal format. - - Returns: - None - """ - arrow = Arrow(width=5, col=color) - arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) - pass - -def save_and_convert(metabMap, map_type, key): - """ - Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. - - Args: - metabMap (ET.ElementTree): An XML tree representing the metabolic map. - map_type (str): The type of map ('mean' or 'median'). - key (str): The key identifying the specific map. - - Returns: - None - """ - svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path) - utils.writeSvg(svgFilePath, metabMap) - if ARGS.generate_pdf: - pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path) - pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) - convert_to_pdf(svgFilePath, pngPath, pdfPath) - if not ARGS.generate_svg: - os.remove(svgFilePath.show()) - - -############################ MAIN ############################################# -def main(args:List[str] = None) -> None: - """ - Initializes everything and sets the program in motion based on the fronted input arguments. - - Returns: - None - - Raises: - sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) - """ - - global ARGS - ARGS = process_args(args) - - if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path) - - core_map :ET.ElementTree = ARGS.choice_map.getMap( - ARGS.tool_dir, - utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) - # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. - # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner - # solution can be derived from my comment in FilePath.fromStrPath - - ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) - - if(ARGS.choice_map == utils.Model.HMRcore): - temp_map = utils.Model.HMRcore_no_legend - computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) - elif(ARGS.choice_map == utils.Model.ENGRO2): - temp_map = utils.Model.ENGRO2_no_legend - computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) - else: - computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) - - - enrichment_results = computeEnrichment(class_pat, ids) - for i, j, comparisonDict, max_z_score in enrichment_results: - map_copy = copy.deepcopy(core_map) - temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j) - createOutputMaps(i, j, map_copy) - - if not ERRORS: return - utils.logWarning( - f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", - ARGS.out_log) - - print('Execution succeded') - -############################################################################### -if __name__ == "__main__": - main() -