changeset 216:b162b98f9de5 draft

Uploaded
author luca_milaz
date Fri, 13 Dec 2024 18:46:12 +0000
parents 5cc4a367ef70
children f9deb464e6a6
files COBRAxy/ras_to_bounds.py COBRAxy/utils/ras_to_bounds.py
diffstat 2 files changed, 17 insertions(+), 301 deletions(-) [+]
line wrap: on
line diff
--- a/COBRAxy/ras_to_bounds.py	Fri Dec 13 11:06:12 2024 +0000
+++ b/COBRAxy/ras_to_bounds.py	Fri Dec 13 18:46:12 2024 +0000
@@ -116,30 +116,31 @@
     return dataset
 
 
-def apply_ras_bounds(model, ras_row):
+def apply_ras_bounds(bounds, ras_row):
     """
     Adjust the bounds of reactions in the model based on RAS values.
 
     Args:
-        model (cobra.Model): The metabolic model to be modified.
+        bounds (pd.DataFrame): Model bounds.
         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
     Returns:
-        None
+        new_bounds (pd.DataFrame): integrated bounds.
     """
+    new_bounds = bounds.copy()
     for reaction in ras_row.index:
         scaling_factor = ras_row[reaction]
-        lower_bound=model.reactions.get_by_id(reaction).lower_bound
-        upper_bound=model.reactions.get_by_id(reaction).upper_bound
+        lower_bound=bounds.loc[reaction, "lower_bound"]
+        upper_bound=bounds.loc[reaction, "upper_bound"]
         valMax=float((upper_bound)*scaling_factor)
         valMin=float((lower_bound)*scaling_factor)
         if upper_bound!=0 and lower_bound==0:
-            model.reactions.get_by_id(reaction).upper_bound=valMax
+            new_bounds.loc[reaction, "upper_bound"] = valMax
         if upper_bound==0 and lower_bound!=0:
-            model.reactions.get_by_id(reaction).lower_bound=valMin
+            new_bounds.loc[reaction, "lower_bound"] = valMin
         if upper_bound!=0 and lower_bound!=0:
-            model.reactions.get_by_id(reaction).lower_bound=valMin
-            model.reactions.get_by_id(reaction).upper_bound=valMax
-    pass
+            new_bounds.loc[reaction, "lower_bound"] = valMin
+            new_bounds.loc[reaction, "upper_bound"] = valMax
+    return new_bounds
 
 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder):
     """
@@ -155,10 +156,9 @@
     Returns:
         None
     """
-    model_new = model.copy()
-    apply_ras_bounds(model_new, ras_row)
-    bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-    bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
+    bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
+    new_bounds = apply_ras_bounds(bounds, ras_row)
+    new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
     pass
 
 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame:
@@ -197,10 +197,9 @@
     if ras is not None:
         Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows())
     else:
-        model_new = model.copy()
-        apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids))
-        bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-        bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
+        bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
+        newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids))
+        newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
     pass
 
 
--- a/COBRAxy/utils/ras_to_bounds.py	Fri Dec 13 11:06:12 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,283 +0,0 @@
-import argparse
-import utils.general_utils as utils
-from typing import Optional, List
-import os
-import numpy as np
-import pandas as pd
-import cobra
-import sys
-import csv
-from joblib import Parallel, delayed, cpu_count
-
-################################# process args ###############################
-def process_args(args :List[str]) -> argparse.Namespace:
-    """
-    Processes command-line arguments.
-
-    Args:
-        args (list): List of command-line arguments.
-
-    Returns:
-        Namespace: An object containing parsed arguments.
-    """
-    parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
-                                     description = 'process some value\'s')
-    
-    parser.add_argument(
-        '-ms', '--model_selector', 
-        type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom],
-        help = 'chose which type of model you want use')
-    
-    parser.add_argument("-mo", "--model", type = str,
-        help = "path to input file with custom rules, if provided")
-    
-    parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name")
-
-    parser.add_argument(
-        '-mes', '--medium_selector', 
-        default = "allOpen",
-        help = 'chose which type of medium you want use')
-    
-    parser.add_argument("-meo", "--medium", type = str,
-        help = "path to input file with custom medium, if provided")
-
-    parser.add_argument('-ol', '--out_log', 
-                        help = "Output log")
-    
-    parser.add_argument('-td', '--tool_dir',
-                        type = str,
-                        required = True,
-                        help = 'your tool directory')
-    
-    parser.add_argument('-ir', '--input_ras',
-                        type=str,
-                        required = False,
-                        help = 'input ras')
-    
-    parser.add_argument('-rn', '--name',
-                type=str,
-                help = 'ras class names')
-    
-    parser.add_argument('-rs', '--ras_selector',
-                        required = True,
-                        type=utils.Bool("using_RAS"),
-                        help = 'ras selector')
-
-    parser.add_argument('-cc', '--cell_class',
-                    type = str,
-                    help = 'output of cell class')
-    
-    
-    ARGS = parser.parse_args()
-    return ARGS
-
-########################### warning ###########################################
-def warning(s :str) -> None:
-    """
-    Log a warning message to an output log file and print it to the console.
-
-    Args:
-        s (str): The warning message to be logged and printed.
-    
-    Returns:
-      None
-    """
-    with open(ARGS.out_log, 'a') as log:
-        log.write(s + "\n\n")
-    print(s)
-
-############################ dataset input ####################################
-def read_dataset(data :str, name :str) -> pd.DataFrame:
-    """
-    Read a dataset from a CSV file and return it as a pandas DataFrame.
-
-    Args:
-        data (str): Path to the CSV file containing the dataset.
-        name (str): Name of the dataset, used in error messages.
-
-    Returns:
-        pandas.DataFrame: DataFrame containing the dataset.
-
-    Raises:
-        pd.errors.EmptyDataError: If the CSV file is empty.
-        sys.exit: If the CSV file has the wrong format, the execution is aborted.
-    """
-    try:
-        dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
-    except pd.errors.EmptyDataError:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    if len(dataset.columns) < 2:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    return dataset
-
-
-def apply_ras_bounds(model, ras_row, rxns_ids, mediumRxns_ids):
-    """
-    Adjust the bounds of reactions in the model based on RAS values.
-
-    Args:
-        model (cobra.Model): The metabolic model to be modified.
-        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
-        rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
-        mediumRxns_ids (list of str): List of reaction IDs in the medium. Their RAS is set to zero, but they are already set in the model.
-    Returns:
-        None
-    """
-    for reaction in ras_row.index:
-        scaling_factor = ras_row[reaction]
-        if(scaling_factor not in [np.nan, None]):
-            lower_bound=model.reactions.get_by_id(reaction).lower_bound
-            upper_bound=model.reactions.get_by_id(reaction).upper_bound
-            valMax=float((upper_bound)*scaling_factor)
-            valMin=float((lower_bound)*scaling_factor)
-            if upper_bound!=0 and lower_bound==0:
-                model.reactions.get_by_id(reaction).upper_bound=valMax
-            if upper_bound==0 and lower_bound!=0:
-                model.reactions.get_by_id(reaction).lower_bound=valMin
-            if upper_bound!=0 and lower_bound!=0:
-                model.reactions.get_by_id(reaction).lower_bound=valMin
-                model.reactions.get_by_id(reaction).upper_bound=valMax
-    pass
-
-def process_ras_cell(cellName, ras_row, model, rxns_ids, mediumRxns_ids, output_folder):
-    """
-    Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
-
-    Args:
-        cellName (str): The name of the RAS cell (used for naming the output file).
-        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
-        model (cobra.Model): The metabolic model to be modified.
-        rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
-        mediumRxns_ids (list of str): List of reaction IDs in the medium. Their RAS is set to zero, but they are already set in the model.
-        output_folder (str): Folder path where the output CSV file will be saved.
-    
-    Returns:
-        None
-    """
-    model_new = model.copy()
-    apply_ras_bounds(model_new, ras_row, rxns_ids, mediumRxns_ids)
-    bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-    bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
-    pass
-
-def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame:
-    """
-    Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
-    
-    Args:
-        model (cobra.Model): The metabolic model for which bounds will be generated.
-        medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions.
-        ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
-        output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
-
-    Returns:
-        pd.DataFrame: DataFrame containing the bounds of reactions in the model.
-    """
-    rxns_ids = [rxn.id for rxn in model.reactions]
-    
-    # Set medium conditions
-    for reaction, value in medium.items():
-        if value is not None:
-            ## SOLO ENGRO2
-            if(reaction != "EX_thbpt_e" and reaction != "EX_lac__L_e"):
-                model.reactions.get_by_id(reaction).lower_bound = -float(value)
-            if(reaction == "EX_lac__L_e"):
-                model.reactions.get_by_id(reaction).lower_bound = float(0.0)
-
-    mediumRxns_ids = medium.keys()
-            
-    # Perform Flux Variability Analysis (FVA) on this medium
-    df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
-    
-    # Set FVA bounds
-    for reaction in rxns_ids:
-        model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"])
-        model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
-
-    if ras is not None:
-        #Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows())
-        for cellName, ras_row in ras.iterrows():
-            process_ras_cell(cellName, ras_row, model, rxns_ids, mediumRxns_ids, output_folder)
-            break #just one cell for testing
-    else:
-        model_new = model.copy()
-        apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids, mediumRxns_ids)
-        bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-        bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
-    pass
-
-
-
-############################# main ###########################################
-def main() -> None:
-    """
-    Initializes everything and sets the program in motion based on the fronted input arguments.
-
-    Returns:
-        None
-    """
-    if not os.path.exists('ras_to_bounds'):
-        os.makedirs('ras_to_bounds')
-
-
-    global ARGS
-    ARGS = process_args(sys.argv)
-
-    ARGS.output_folder = 'ras_to_bounds/'
-
-    if(ARGS.ras_selector == True):
-        ras_file_list = ARGS.input_ras.split(",")
-        ras_file_names = ARGS.name.split(",")
-        ras_class_names = []
-        for file in ras_file_names:
-            ras_class_names.append(file.split(".")[0])
-        ras_list = []
-        class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"])
-        for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names):
-            ras = read_dataset(ras_matrix, "ras dataset")
-            ras.replace("None", None, inplace=True)
-            ras.set_index("Reactions", drop=True, inplace=True)
-            ras = ras.T
-            ras = ras.astype(float)
-            ras_list.append(ras)
-            for patient_id in ras.index:
-                class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name]
-        
-        
-        # Concatenate all ras DataFrames into a single DataFrame
-        ras_combined = pd.concat(ras_list, axis=0)
-        # Normalize the RAS values by max RAS
-        ras_combined = ras_combined.div(ras_combined.max(axis=0))
-        #ras_combined = ras_combined.fillna(0)
-        #il ras c'è per tutti o non c'è per nessuno
-
-
-    
-    model_type :utils.Model = ARGS.model_selector
-    if model_type is utils.Model.Custom:
-        model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext)
-    else:
-        model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir)
-
-    if(ARGS.medium_selector == "Custom"):
-        medium = read_dataset(ARGS.medium, "medium dataset")
-        medium.set_index(medium.columns[0], inplace=True)
-        medium = medium.astype(float)
-        medium = medium[medium.columns[0]].to_dict()
-    else:
-        df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
-        ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
-        medium = df_mediums[[ARGS.medium_selector]]
-        medium = medium[ARGS.medium_selector].to_dict()
-
-    if(ARGS.ras_selector == True):
-        generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder)
-        class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False)
-    else:
-        generate_bounds(model, medium, output_folder=ARGS.output_folder)
-
-    pass
-        
-##############################################################################
-if __name__ == "__main__":
-    main()
\ No newline at end of file