Mercurial > repos > bimib > cobraxy
changeset 86:f17137e8824a draft
Uploaded
author | luca_milaz |
---|---|
date | Sun, 13 Oct 2024 11:31:52 +0000 |
parents | 7ffe9d0477cf |
children | 9c802c5cad40 |
files | COBRAxy/ras_to_bounds.py |
diffstat | 1 files changed, 276 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/COBRAxy/ras_to_bounds.py Sun Oct 13 11:31:52 2024 +0000 @@ -0,0 +1,276 @@ +import argparse +import utils.general_utils as utils +from typing import Optional, List +import os +import numpy as np +import pandas as pd +import cobra +import sys +import csv +from joblib import Parallel, delayed, cpu_count + +################################# process args ############################### +def process_args(args :List[str]) -> argparse.Namespace: + """ + Processes command-line arguments. + + Args: + args (list): List of command-line arguments. + + Returns: + Namespace: An object containing parsed arguments. + """ + parser = argparse.ArgumentParser(usage = '%(prog)s [options]', + description = 'process some value\'s') + + parser.add_argument( + '-ms', '--model_selector', + type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], + help = 'chose which type of model you want use') + + parser.add_argument("-mo", "--model", type = str, + help = "path to input file with custom rules, if provided") + + parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") + + parser.add_argument( + '-mes', '--medium_selector', + default = "allOpen", + help = 'chose which type of medium you want use') + + parser.add_argument("-meo", "--medium", type = str, + help = "path to input file with custom medium, if provided") + + parser.add_argument('-ol', '--out_log', + help = "Output log") + + parser.add_argument('-td', '--tool_dir', + type = str, + required = True, + help = 'your tool directory') + + parser.add_argument('-ir', '--input_ras', + type=str, + required = False, + help = 'input ras') + + parser.add_argument('-rn', '--names', + type=str, + help = 'ras class names') + + parser.add_argument('-rs', '--ras_selector', + required = True, + type=utils.Bool("using_RAS"), + help = 'ras selector') + + parser.add_argument('-cc', '--cell_class', + type = str, + help = 'output of cell class') + + + ARGS = parser.parse_args() + return ARGS + +########################### warning ########################################### +def warning(s :str) -> None: + """ + Log a warning message to an output log file and print it to the console. + + Args: + s (str): The warning message to be logged and printed. + + Returns: + None + """ + with open(ARGS.out_log, 'a') as log: + log.write(s + "\n\n") + print(s) + +############################ dataset input #################################### +def read_dataset(data :str, name :str) -> pd.DataFrame: + """ + Read a dataset from a CSV file and return it as a pandas DataFrame. + + Args: + data (str): Path to the CSV file containing the dataset. + name (str): Name of the dataset, used in error messages. + + Returns: + pandas.DataFrame: DataFrame containing the dataset. + + Raises: + pd.errors.EmptyDataError: If the CSV file is empty. + sys.exit: If the CSV file has the wrong format, the execution is aborted. + """ + try: + dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + return dataset + + +def apply_ras_bounds(model, ras_row, rxns_ids): + """ + Adjust the bounds of reactions in the model based on RAS values. + + Args: + model (cobra.Model): The metabolic model to be modified. + ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. + rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. + + Returns: + None + """ + for reaction in rxns_ids: + if reaction in ras_row.index: + scaling_factor = ras_row[reaction] + lower_bound=model.reactions.get_by_id(reaction).lower_bound + upper_bound=model.reactions.get_by_id(reaction).upper_bound + #warning("Reaction: "+reaction+" Lower Bound: "+str(lower_bound)+" Upper Bound: "+str(upper_bound)+" Scaling Factor: "+str(scaling_factor)) + valMax=float((upper_bound)*scaling_factor) + valMin=float((lower_bound)*scaling_factor) + if upper_bound!=0 and lower_bound==0: + model.reactions.get_by_id(reaction).upper_bound=valMax + if upper_bound==0 and lower_bound!=0: + model.reactions.get_by_id(reaction).lower_bound=valMin + if upper_bound!=0 and lower_bound!=0: + model.reactions.get_by_id(reaction).lower_bound=valMin + model.reactions.get_by_id(reaction).upper_bound=valMax + pass + +def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): + """ + Process a single RAS cell, apply bounds, and save the bounds to a CSV file. + + Args: + cellName (str): The name of the RAS cell (used for naming the output file). + ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. + model (cobra.Model): The metabolic model to be modified. + rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. + output_folder (str): Folder path where the output CSV file will be saved. + + Returns: + None + """ + model_new = model.copy() + apply_ras_bounds(model_new, ras_row, rxns_ids) + bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) + bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) + pass + +def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: + """ + Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. + + Args: + model (cobra.Model): The metabolic model for which bounds will be generated. + medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. + ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. + output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. + + Returns: + pd.DataFrame: DataFrame containing the bounds of reactions in the model. + """ + rxns_ids = [rxn.id for rxn in model.reactions] + + # Set medium conditions + for reaction, value in medium.items(): + if value is not None: + model.reactions.get_by_id(reaction).lower_bound = -float(value) + + # Perform Flux Variability Analysis (FVA) + df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) + + # Set FVA bounds + for reaction in rxns_ids: + rxn = model.reactions.get_by_id(reaction) + rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) + rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) + + if ras is not None: + Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) + #for cellName, ras_row in ras.iterrows(): + #process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder) + else: + model_new = model.copy() + apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) + bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) + bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) + pass + + + +############################# main ########################################### +def main() -> None: + """ + Initializes everything and sets the program in motion based on the fronted input arguments. + + Returns: + None + """ + if not os.path.exists('ras_to_bounds'): + os.makedirs('ras_to_bounds') + + + global ARGS + ARGS = process_args(sys.argv) + + ARGS.output_folder = 'ras_to_bounds/' + + if(ARGS.ras_selector == True): + ras_file_list = ARGS.input_ras.split(",") + ras_file_names = ARGS.names.split(",") + ras_class_names = [] + for file in ras_file_names: + ras_class_names.append(file.split(".")[0]) + ras_list = [] + class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) + for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): + ras = read_dataset(ras_matrix, "ras dataset") + ras.replace("None", None, inplace=True) + ras.set_index("Reactions", drop=True, inplace=True) + ras = ras.T + ras = ras.astype(float) + ras_list.append(ras) + for patient_id in ras.index: + class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] + + + # Concatenate all ras DataFrames into a single DataFrame + ras_combined = pd.concat(ras_list, axis=0) + # Normalize the RAS values by max RAS + ras_combined = ras_combined.div(ras_combined.max(axis=0)) + ras_combined = ras_combined.fillna(0) + + + + model_type :utils.Model = ARGS.model_selector + if model_type is utils.Model.Custom: + model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) + else: + model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) + + if(ARGS.medium_selector == "Custom"): + medium = read_dataset(ARGS.medium, "medium dataset") + medium.set_index(medium.columns[0], inplace=True) + medium = medium.astype(float) + medium = medium[medium.columns[0]].to_dict() + else: + df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) + ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") + medium = df_mediums[[ARGS.medium_selector]] + medium = medium[ARGS.medium_selector].to_dict() + + if(ARGS.ras_selector == True): + generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) + class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) + else: + generate_bounds(model, medium, output_folder=ARGS.output_folder) + + pass + +############################################################################## +if __name__ == "__main__": + main() \ No newline at end of file