Mercurial > repos > bimib > marea
comparison Marea/ras_generator.py @ 47:3af9d394367c draft
Uploaded
author | bimib |
---|---|
date | Wed, 19 Feb 2020 10:44:52 -0500 |
parents | 5d5d01ef1d68 |
children | 3b0e71e28c0b |
comparison
equal
deleted
inserted
replaced
46:5d5d01ef1d68 | 47:3af9d394367c |
---|---|
1 from __future__ import division | 1 from __future__ import division |
2 import sys | 2 import sys |
3 import pandas as pd | 3 import pandas as pd |
4 import itertools as it | |
5 import scipy.stats as st | |
6 import collections | 4 import collections |
7 import lxml.etree as ET | |
8 import pickle as pk | 5 import pickle as pk |
9 import math | 6 import math |
10 import os | |
11 import argparse | 7 import argparse |
12 from svglib.svglib import svg2rlg | |
13 from reportlab.graphics import renderPDF | |
14 | 8 |
15 ########################## argparse ########################################## | 9 ########################## argparse ########################################## |
16 | 10 |
17 def process_args(args): | 11 def process_args(args): |
18 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 12 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', |
24 choices = ['HMRcore', 'Recon', 'Custom'], | 18 choices = ['HMRcore', 'Recon', 'Custom'], |
25 help = 'chose which type of dataset you want use') | 19 help = 'chose which type of dataset you want use') |
26 parser.add_argument('-cr', '--custom', | 20 parser.add_argument('-cr', '--custom', |
27 type = str, | 21 type = str, |
28 help='your dataset if you want custom rules') | 22 help='your dataset if you want custom rules') |
29 parser.add_argument('-na', '--names', | |
30 type = str, | |
31 nargs = '+', | |
32 help = 'input names') | |
33 parser.add_argument('-n', '--none', | 23 parser.add_argument('-n', '--none', |
34 type = str, | 24 type = str, |
35 default = 'true', | 25 default = 'true', |
36 choices = ['true', 'false'], | 26 choices = ['true', 'false'], |
37 help = 'compute Nan values') | 27 help = 'compute Nan values') |
38 parser.add_argument('-pv' ,'--pValue', | |
39 type = float, | |
40 default = 0.05, | |
41 help = 'P-Value threshold (default: %(default)s)') | |
42 parser.add_argument('-fc', '--fChange', | |
43 type = float, | |
44 default = 1.5, | |
45 help = 'Fold-Change threshold (default: %(default)s)') | |
46 parser.add_argument('-td', '--tool_dir', | 28 parser.add_argument('-td', '--tool_dir', |
47 type = str, | 29 type = str, |
48 required = True, | 30 required = True, |
49 help = 'your tool directory') | 31 help = 'your tool directory') |
50 parser.add_argument('-op', '--option', | |
51 type = str, | |
52 choices = ['datasets', 'dataset_class', 'datasets_rasonly'], | |
53 help='dataset or dataset and class') | |
54 parser.add_argument('-ol', '--out_log', | 32 parser.add_argument('-ol', '--out_log', |
55 help = "Output log") | 33 help = "Output log") |
56 parser.add_argument('-ids', '--input_datas', | 34 parser.add_argument('-id', '--input', |
57 type = str, | |
58 nargs = '+', | |
59 help = 'input datasets') | |
60 parser.add_argument('-id', '--input_data', | |
61 type = str, | 35 type = str, |
62 help = 'input dataset') | 36 help = 'input dataset') |
63 parser.add_argument('-ic', '--input_class', | 37 parser.add_argument('-ra', '--ras_output', |
64 type = str, | |
65 help = 'sample group specification') | |
66 parser.add_argument('-cm', '--custom_map', | |
67 type = str, | |
68 help = 'custom map') | |
69 parser.add_argument('-yn', '--yes_no', | |
70 type = str, | 38 type = str, |
71 choices = ['yes', 'no'], | 39 required = True, |
72 help = 'if make or not custom map') | 40 help = 'ras output') |
73 parser.add_argument('-gs', '--generate_svg', | 41 |
74 type = str, | |
75 default = 'true', | |
76 choices = ['true', 'false'], | |
77 help = 'generate svg map') | |
78 parser.add_argument('-gp', '--generate_pdf', | |
79 type = str, | |
80 default = 'true', | |
81 choices = ['true', 'false'], | |
82 help = 'generate pdf map') | |
83 parser.add_argument('-gr', '--generate_ras', | |
84 type = str, | |
85 default = 'true', | |
86 choices = ['true', 'false'], | |
87 help = 'generate reaction activity score') | |
88 parser.add_argument('-sr', '--single_ras_file', | |
89 type = str, | |
90 help = 'file that will contain ras') | |
91 | |
92 args = parser.parse_args() | 42 args = parser.parse_args() |
93 return args | 43 return args |
94 | 44 |
95 ########################### warning ########################################### | 45 ########################### warning ########################################### |
96 | 46 |
294 return False | 244 return False |
295 l = l[3:] | 245 l = l[3:] |
296 else: | 246 else: |
297 return False | 247 return False |
298 return ris | 248 return ris |
299 | |
300 ############################ map_methods ###################################### | |
301 | |
302 def fold_change(avg1, avg2): | |
303 if avg1 == 0 and avg2 == 0: | |
304 return 0 | |
305 elif avg1 == 0: | |
306 return '-INF' | |
307 elif avg2 == 0: | |
308 return 'INF' | |
309 else: | |
310 return math.log(avg1 / avg2, 2) | |
311 | |
312 def fix_style(l, col, width, dash): | |
313 tmp = l.split(';') | |
314 flag_col = False | |
315 flag_width = False | |
316 flag_dash = False | |
317 for i in range(len(tmp)): | |
318 if tmp[i].startswith('stroke:'): | |
319 tmp[i] = 'stroke:' + col | |
320 flag_col = True | |
321 if tmp[i].startswith('stroke-width:'): | |
322 tmp[i] = 'stroke-width:' + width | |
323 flag_width = True | |
324 if tmp[i].startswith('stroke-dasharray:'): | |
325 tmp[i] = 'stroke-dasharray:' + dash | |
326 flag_dash = True | |
327 if not flag_col: | |
328 tmp.append('stroke:' + col) | |
329 if not flag_width: | |
330 tmp.append('stroke-width:' + width) | |
331 if not flag_dash: | |
332 tmp.append('stroke-dasharray:' + dash) | |
333 return ';'.join(tmp) | |
334 | |
335 def fix_map(d, core_map, threshold_P_V, threshold_F_C, max_F_C): | |
336 maxT = 12 | |
337 minT = 2 | |
338 grey = '#BEBEBE' | |
339 blue = '#0000FF' | |
340 red = '#E41A1C' | |
341 for el in core_map.iter(): | |
342 el_id = str(el.get('id')) | |
343 if el_id.startswith('R_'): | |
344 tmp = d.get(el_id[2:]) | |
345 if tmp != None: | |
346 p_val = tmp[0] | |
347 f_c = tmp[1] | |
348 if p_val < threshold_P_V: | |
349 if not isinstance(f_c, str): | |
350 if abs(f_c) < math.log(threshold_F_C, 2): | |
351 col = grey | |
352 width = str(minT) | |
353 else: | |
354 if f_c < 0: | |
355 col = blue | |
356 elif f_c > 0: | |
357 col = red | |
358 width = str(max((abs(f_c) * maxT) / max_F_C, minT)) | |
359 else: | |
360 if f_c == '-INF': | |
361 col = blue | |
362 elif f_c == 'INF': | |
363 col = red | |
364 width = str(maxT) | |
365 dash = 'none' | |
366 else: | |
367 dash = '5,5' | |
368 col = grey | |
369 width = str(minT) | |
370 el.set('style', fix_style(el.get('style'), col, width, dash)) | |
371 return core_map | |
372 | 249 |
373 ############################ make recon ####################################### | 250 ############################ make recon ####################################### |
374 | 251 |
375 def check_and_doWord(l): | 252 def check_and_doWord(l): |
376 tmp = [] | 253 tmp = [] |
613 | 490 |
614 ############################ resolve ########################################## | 491 ############################ resolve ########################################## |
615 | 492 |
616 def resolve(genes, rules, ids, resolve_none, name): | 493 def resolve(genes, rules, ids, resolve_none, name): |
617 resolve_rules = {} | 494 resolve_rules = {} |
618 names_array = [] | |
619 not_found = [] | 495 not_found = [] |
620 flag = False | 496 flag = False |
621 for key, value in genes.items(): | 497 for key, value in genes.items(): |
622 tmp_resolve = [] | 498 tmp_resolve = [] |
623 for i in range(len(rules)): | 499 for i in range(len(rules)): |
650 if not pd.isnull(classe): | 526 if not pd.isnull(classe): |
651 l = [] | 527 l = [] |
652 for j in range(i, len(classes)): | 528 for j in range(i, len(classes)): |
653 if classes.iloc[j, 1] == classe: | 529 if classes.iloc[j, 1] == classe: |
654 pat_id = classes.iloc[j, 0] | 530 pat_id = classes.iloc[j, 0] |
655 tmp = resolve_rules.get(pat_id, None) | |
656 if tmp != None: | 531 if tmp != None: |
657 l.append(tmp) | 532 l.append(tmp) |
658 classes.iloc[j, 1] = None | 533 classes.iloc[j, 1] = None |
659 if l: | 534 if l: |
660 class_pat[classe] = list(map(list, zip(*l))) | 535 class_pat[classe] = list(map(list, zip(*l))) |
663 ', the class has been disregarded\n') | 538 ', the class has been disregarded\n') |
664 return class_pat | 539 return class_pat |
665 | 540 |
666 ############################ create_ras ####################################### | 541 ############################ create_ras ####################################### |
667 | 542 |
668 def create_ras (resolve_rules, dataset_name, single_ras, rules, ids): | 543 def create_ras (resolve_rules, dataset_name, rules, ids, file): |
669 | 544 |
670 if resolve_rules == None: | 545 if resolve_rules == None: |
671 warning("Couldn't generate RAS for current dataset: " + dataset_name) | 546 warning("Couldn't generate RAS for current dataset: " + dataset_name) |
672 | 547 |
673 for geni in resolve_rules.values(): | 548 for geni in resolve_rules.values(): |
678 output_ras = pd.DataFrame.from_dict(resolve_rules) | 553 output_ras = pd.DataFrame.from_dict(resolve_rules) |
679 | 554 |
680 output_ras.insert(0, 'Reactions', ids) | 555 output_ras.insert(0, 'Reactions', ids) |
681 output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) | 556 output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) |
682 | 557 |
683 if (single_ras): | 558 text_file = open(file, "w") |
684 args = process_args(sys.argv) | |
685 text_file = open(args.single_ras_file, "w") | |
686 else: | |
687 text_file = open("ras/Reaction_Activity_Score_Of_" + dataset_name + ".tsv", "w") | |
688 | 559 |
689 text_file.write(output_to_csv) | 560 text_file.write(output_to_csv) |
690 text_file.close() | 561 text_file.close() |
691 | 562 |
692 ############################ map ############################################## | |
693 | |
694 def maps(core_map, class_pat, ids, threshold_P_V, threshold_F_C, create_svg, create_pdf): | |
695 args = process_args(sys.argv) | |
696 if (not class_pat) or (len(class_pat.keys()) < 2): | |
697 sys.exit('Execution aborted: classes provided for comparisons are ' + | |
698 'less than two\n') | |
699 for i, j in it.combinations(class_pat.keys(), 2): | |
700 tmp = {} | |
701 count = 0 | |
702 max_F_C = 0 | |
703 for l1, l2 in zip(class_pat.get(i), class_pat.get(j)): | |
704 try: | |
705 stat_D, p_value = st.ks_2samp(l1, l2) | |
706 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
707 if not isinstance(avg, str): | |
708 if max_F_C < abs(avg): | |
709 max_F_C = abs(avg) | |
710 tmp[ids[count]] = [float(p_value), avg] | |
711 count += 1 | |
712 except (TypeError, ZeroDivisionError): | |
713 count += 1 | |
714 tab = 'result/' + i + '_vs_' + j + ' (Tabular Result).tsv' | |
715 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") | |
716 tmp_csv = tmp_csv.reset_index() | |
717 header = ['ids', 'P_Value', 'Log2(fold change)'] | |
718 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) | |
719 | |
720 if create_svg or create_pdf: | |
721 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' | |
722 and args.yes_no == 'yes'): | |
723 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) | |
724 file_svg = 'result/' + i + '_vs_' + j + ' (SVG Map).svg' | |
725 with open(file_svg, 'wb') as new_map: | |
726 new_map.write(ET.tostring(core_map)) | |
727 | |
728 | |
729 if create_pdf: | |
730 file_pdf = 'result/' + i + '_vs_' + j + ' (PDF Map).pdf' | |
731 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) | |
732 | |
733 if not create_svg: | |
734 #Ho utilizzato il file svg per generare il pdf, | |
735 #ma l'utente non ne ha richiesto il ritorno, quindi | |
736 #lo elimino | |
737 os.remove('result/' + i + '_vs_' + j + ' (SVG Map).svg') | |
738 | |
739 return None | |
740 | |
741 ############################ MAIN ############################################# | 563 ############################ MAIN ############################################# |
742 | 564 |
743 def main(): | 565 def main(): |
744 args = process_args(sys.argv) | 566 args = process_args(sys.argv) |
745 | 567 |
746 create_svg = check_bool(args.generate_svg) | |
747 create_pdf = check_bool(args.generate_pdf) | |
748 generate_ras = check_bool(args.generate_ras) | |
749 | |
750 os.makedirs('result') | |
751 | |
752 if generate_ras: | |
753 os.makedirs('ras') | |
754 | |
755 if args.rules_selector == 'HMRcore': | 568 if args.rules_selector == 'HMRcore': |
756 recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) | 569 recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) |
757 elif args.rules_selector == 'Recon': | 570 elif args.rules_selector == 'Recon': |
758 recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) | 571 recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) |
759 elif args.rules_selector == 'Custom': | 572 elif args.rules_selector == 'Custom': |
760 ids, rules, gene_in_rule = make_recon(args.custom) | 573 ids, rules, gene_in_rule = make_recon(args.custom) |
761 | 574 |
762 resolve_none = check_bool(args.none) | 575 resolve_none = check_bool(args.none) |
763 | 576 |
764 class_pat = {} | 577 |
765 | 578 name = "RAS Dataset" |
766 if args.option == 'datasets_rasonly': | 579 dataset = read_dataset(args.input, "dataset") |
767 name = "RAS Dataset" | 580 |
768 dataset = read_dataset(args.input_datas[0],"dataset") | 581 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) |
769 | 582 |
770 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | 583 type_gene = gene_type(dataset.iloc[0, 0], name) |
771 | |
772 type_gene = gene_type(dataset.iloc[0, 0], name) | |
773 | |
774 if args.rules_selector != 'Custom': | |
775 genes = data_gene(dataset, type_gene, name, None) | |
776 ids, rules = load_id_rules(recon.get(type_gene)) | |
777 elif args.rules_selector == 'Custom': | |
778 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
779 | 584 |
780 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | 585 if args.rules_selector != 'Custom': |
781 | 586 genes = data_gene(dataset, type_gene, name, None) |
782 create_ras(resolve_rules, name, True, rules, ids) | 587 ids, rules = load_id_rules(recon.get(type_gene)) |
783 | 588 elif args.rules_selector == 'Custom': |
784 if err != None and err: | 589 genes = data_gene(dataset, type_gene, name, gene_in_rule) |
785 warning('Warning: gene\n' + str(err) + '\nnot found in class ' | 590 |
786 + name + ', the expression level for this gene ' + | 591 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) |
787 'will be considered NaN\n') | 592 |
788 | 593 create_ras(resolve_rules, name, rules, ids, args.ras_output) |
789 print('execution succeded') | 594 |
790 return None | 595 if err != None and err: |
791 | 596 warning('Warning: gene\n' + str(err) + '\nnot found in class ' |
792 | 597 + name + ', the expression level for this gene ' + |
793 elif args.option == 'datasets': | 598 'will be considered NaN\n') |
794 num = 1 | 599 |
795 for i, j in zip(args.input_datas, args.names): | 600 |
796 | |
797 name = name_dataset(j, num) | |
798 dataset = read_dataset(i, name) | |
799 | |
800 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | |
801 | |
802 type_gene = gene_type(dataset.iloc[0, 0], name) | |
803 | |
804 if args.rules_selector != 'Custom': | |
805 genes = data_gene(dataset, type_gene, name, None) | |
806 ids, rules = load_id_rules(recon.get(type_gene)) | |
807 elif args.rules_selector == 'Custom': | |
808 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
809 | |
810 | |
811 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | |
812 | |
813 if generate_ras: | |
814 create_ras(resolve_rules, name, False, rules, ids) | |
815 | |
816 if err != None and err: | |
817 warning('Warning: gene\n' + str(err) + '\nnot found in class ' | |
818 + name + ', the expression level for this gene ' + | |
819 'will be considered NaN\n') | |
820 if resolve_rules != None: | |
821 class_pat[name] = list(map(list, zip(*resolve_rules.values()))) | |
822 num += 1 | |
823 elif args.option == 'dataset_class': | |
824 name = 'RNAseq' | |
825 dataset = read_dataset(args.input_data, name) | |
826 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | |
827 type_gene = gene_type(dataset.iloc[0, 0], name) | |
828 classes = read_dataset(args.input_class, 'class') | |
829 if not len(classes.columns) == 2: | |
830 warning('Warning: more than 2 columns in class file. Extra' + | |
831 'columns have been disregarded\n') | |
832 classes = classes.astype(str) | |
833 if args.rules_selector != 'Custom': | |
834 genes = data_gene(dataset, type_gene, name, None) | |
835 ids, rules = load_id_rules(recon.get(type_gene)) | |
836 elif args.rules_selector == 'Custom': | |
837 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
838 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | |
839 if err != None and err: | |
840 warning('Warning: gene\n'+str(err)+'\nnot found in class ' | |
841 + name + ', the expression level for this gene ' + | |
842 'will be considered NaN\n') | |
843 if resolve_rules != None: | |
844 class_pat = split_class(classes, resolve_rules) | |
845 if generate_ras: | |
846 create_ras(resolve_rules, name, False, rules, ids) | |
847 | |
848 | |
849 if args.rules_selector == 'Custom': | |
850 if args.yes_no == 'yes': | |
851 try: | |
852 core_map = ET.parse(args.custom_map) | |
853 except (ET.XMLSyntaxError, ET.XMLSchemaParseError): | |
854 sys.exit('Execution aborted: custom map in wrong format') | |
855 elif args.yes_no == 'no': | |
856 core_map = ET.parse(args.tool_dir + '/local/HMRcoreMap.svg') | |
857 else: | |
858 core_map = ET.parse(args.tool_dir+'/local/HMRcoreMap.svg') | |
859 | |
860 maps(core_map, class_pat, ids, args.pValue, args.fChange, create_svg, create_pdf) | |
861 | |
862 print('Execution succeded') | 601 print('Execution succeded') |
863 | 602 |
864 return None | 603 return None |
865 | 604 |
866 ############################################################################### | 605 ############################################################################### |