Mercurial > repos > bimib > marea
comparison marea_cluster.py @ 38:4e1b466935cd draft
Uploaded
| author | bimib | 
|---|---|
| date | Mon, 25 Nov 2019 12:02:28 -0500 | 
| parents | |
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| 37:2495c7772ca8 | 38:4e1b466935cd | 
|---|---|
| 1 # -*- coding: utf-8 -*- | |
| 2 """ | |
| 3 Created on Mon Jun 3 19:51:00 2019 | |
| 4 @author: Narger | |
| 5 """ | |
| 6 | |
| 7 import sys | |
| 8 import argparse | |
| 9 import os | |
| 10 from sklearn.datasets import make_blobs | |
| 11 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
| 12 from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score, cluster | |
| 13 import matplotlib | |
| 14 matplotlib.use('agg') | |
| 15 import matplotlib.pyplot as plt | |
| 16 import scipy.cluster.hierarchy as shc | |
| 17 import matplotlib.cm as cm | |
| 18 import numpy as np | |
| 19 import pandas as pd | |
| 20 | |
| 21 ################################# process args ############################### | |
| 22 | |
| 23 def process_args(args): | |
| 24 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 25 description = 'process some value\'s' + | |
| 26 ' genes to create class.') | |
| 27 | |
| 28 parser.add_argument('-ol', '--out_log', | |
| 29 help = "Output log") | |
| 30 | |
| 31 parser.add_argument('-in', '--input', | |
| 32 type = str, | |
| 33 help = 'input dataset') | |
| 34 | |
| 35 parser.add_argument('-cy', '--cluster_type', | |
| 36 type = str, | |
| 37 choices = ['kmeans', 'dbscan', 'hierarchy'], | |
| 38 default = 'kmeans', | |
| 39 help = 'choose clustering algorythm') | |
| 40 | |
| 41 parser.add_argument('-k1', '--k_min', | |
| 42 type = int, | |
| 43 default = 2, | |
| 44 help = 'choose minimun cluster number to be generated') | |
| 45 | |
| 46 parser.add_argument('-k2', '--k_max', | |
| 47 type = int, | |
| 48 default = 7, | |
| 49 help = 'choose maximum cluster number to be generated') | |
| 50 | |
| 51 parser.add_argument('-el', '--elbow', | |
| 52 type = str, | |
| 53 default = 'false', | |
| 54 choices = ['true', 'false'], | |
| 55 help = 'choose if you want to generate an elbow plot for kmeans') | |
| 56 | |
| 57 parser.add_argument('-si', '--silhouette', | |
| 58 type = str, | |
| 59 default = 'false', | |
| 60 choices = ['true', 'false'], | |
| 61 help = 'choose if you want silhouette plots') | |
| 62 | |
| 63 parser.add_argument('-td', '--tool_dir', | |
| 64 type = str, | |
| 65 required = True, | |
| 66 help = 'your tool directory') | |
| 67 | |
| 68 parser.add_argument('-ms', '--min_samples', | |
| 69 type = float, | |
| 70 help = 'min samples for dbscan (optional)') | |
| 71 | |
| 72 parser.add_argument('-ep', '--eps', | |
| 73 type = float, | |
| 74 help = 'eps for dbscan (optional)') | |
| 75 | |
| 76 parser.add_argument('-bc', '--best_cluster', | |
| 77 type = str, | |
| 78 help = 'output of best cluster tsv') | |
| 79 | |
| 80 | |
| 81 | |
| 82 args = parser.parse_args() | |
| 83 return args | |
| 84 | |
| 85 ########################### warning ########################################### | |
| 86 | |
| 87 def warning(s): | |
| 88 args = process_args(sys.argv) | |
| 89 with open(args.out_log, 'a') as log: | |
| 90 log.write(s + "\n\n") | |
| 91 print(s) | |
| 92 | |
| 93 ########################## read dataset ###################################### | |
| 94 | |
| 95 def read_dataset(dataset): | |
| 96 try: | |
| 97 dataset = pd.read_csv(dataset, sep = '\t', header = 0) | |
| 98 except pd.errors.EmptyDataError: | |
| 99 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 100 if len(dataset.columns) < 2: | |
| 101 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 102 return dataset | |
| 103 | |
| 104 ############################ rewrite_input ################################### | |
| 105 | |
| 106 def rewrite_input(dataset): | |
| 107 #Riscrivo il dataset come dizionario di liste, | |
| 108 #non come dizionario di dizionari | |
| 109 | |
| 110 dataset.pop('Reactions', None) | |
| 111 | |
| 112 for key, val in dataset.items(): | |
| 113 l = [] | |
| 114 for i in val: | |
| 115 if i == 'None': | |
| 116 l.append(None) | |
| 117 else: | |
| 118 l.append(float(i)) | |
| 119 | |
| 120 dataset[key] = l | |
| 121 | |
| 122 return dataset | |
| 123 | |
| 124 ############################## write to csv ################################## | |
| 125 | |
| 126 def write_to_csv (dataset, labels, name): | |
| 127 #labels = predict | |
| 128 predict = [x+1 for x in labels] | |
| 129 | |
| 130 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 131 | |
| 132 dest = name | |
| 133 classe.to_csv(dest, sep = '\t', index = False, | |
| 134 header = ['Patient_ID', 'Class']) | |
| 135 | |
| 136 ########################### trova il massimo in lista ######################## | |
| 137 def max_index (lista): | |
| 138 best = -1 | |
| 139 best_index = 0 | |
| 140 for i in range(len(lista)): | |
| 141 if lista[i] > best: | |
| 142 best = lista [i] | |
| 143 best_index = i | |
| 144 | |
| 145 return best_index | |
| 146 | |
| 147 ################################ kmeans ##################################### | |
| 148 | |
| 149 def kmeans (k_min, k_max, dataset, elbow, silhouette, best_cluster): | |
| 150 if not os.path.exists('clustering'): | |
| 151 os.makedirs('clustering') | |
| 152 | |
| 153 | |
| 154 if elbow == 'true': | |
| 155 elbow = True | |
| 156 else: | |
| 157 elbow = False | |
| 158 | |
| 159 if silhouette == 'true': | |
| 160 silhouette = True | |
| 161 else: | |
| 162 silhouette = False | |
| 163 | |
| 164 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 165 distortions = [] | |
| 166 scores = [] | |
| 167 all_labels = [] | |
| 168 | |
| 169 clusterer = KMeans(n_clusters=1, random_state=10) | |
| 170 distortions.append(clusterer.fit(dataset).inertia_) | |
| 171 | |
| 172 | |
| 173 for n_clusters in range_n_clusters: | |
| 174 clusterer = KMeans(n_clusters=n_clusters, random_state=10) | |
| 175 cluster_labels = clusterer.fit_predict(dataset) | |
| 176 | |
| 177 all_labels.append(cluster_labels) | |
| 178 if n_clusters == 1: | |
| 179 silhouette_avg = 0 | |
| 180 else: | |
| 181 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
| 182 scores.append(silhouette_avg) | |
| 183 distortions.append(clusterer.fit(dataset).inertia_) | |
| 184 | |
| 185 best = max_index(scores) + k_min | |
| 186 | |
| 187 for i in range(len(all_labels)): | |
| 188 prefix = '' | |
| 189 if (i + k_min == best): | |
| 190 prefix = '_BEST' | |
| 191 | |
| 192 write_to_csv(dataset, all_labels[i], 'clustering/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | |
| 193 | |
| 194 | |
| 195 if (prefix == '_BEST'): | |
| 196 labels = all_labels[i] | |
| 197 predict = [x+1 for x in labels] | |
| 198 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 199 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 200 | |
| 201 | |
| 202 | |
| 203 | |
| 204 if silhouette: | |
| 205 silihouette_draw(dataset, all_labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 206 | |
| 207 | |
| 208 if elbow: | |
| 209 elbow_plot(distortions, k_min,k_max) | |
| 210 | |
| 211 | |
| 212 | |
| 213 | |
| 214 | |
| 215 ############################## elbow_plot #################################### | |
| 216 | |
| 217 def elbow_plot (distortions, k_min, k_max): | |
| 218 plt.figure(0) | |
| 219 x = list(range(k_min, k_max + 1)) | |
| 220 x.insert(0, 1) | |
| 221 plt.plot(x, distortions, marker = 'o') | |
| 222 plt.xlabel('Number of clusters (k)') | |
| 223 plt.ylabel('Distortion') | |
| 224 s = 'clustering/elbow_plot.png' | |
| 225 fig = plt.gcf() | |
| 226 fig.set_size_inches(18.5, 10.5, forward = True) | |
| 227 fig.savefig(s, dpi=100) | |
| 228 | |
| 229 | |
| 230 ############################## silhouette plot ############################### | |
| 231 def silihouette_draw(dataset, labels, n_clusters, path): | |
| 232 if n_clusters == 1: | |
| 233 return None | |
| 234 | |
| 235 silhouette_avg = silhouette_score(dataset, labels) | |
| 236 warning("For n_clusters = " + str(n_clusters) + | |
| 237 " The average silhouette_score is: " + str(silhouette_avg)) | |
| 238 | |
| 239 plt.close('all') | |
| 240 # Create a subplot with 1 row and 2 columns | |
| 241 fig, (ax1) = plt.subplots(1, 1) | |
| 242 | |
| 243 fig.set_size_inches(18, 7) | |
| 244 | |
| 245 # The 1st subplot is the silhouette plot | |
| 246 # The silhouette coefficient can range from -1, 1 but in this example all | |
| 247 # lie within [-0.1, 1] | |
| 248 ax1.set_xlim([-1, 1]) | |
| 249 # The (n_clusters+1)*10 is for inserting blank space between silhouette | |
| 250 # plots of individual clusters, to demarcate them clearly. | |
| 251 ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | |
| 252 | |
| 253 # Compute the silhouette scores for each sample | |
| 254 sample_silhouette_values = silhouette_samples(dataset, labels) | |
| 255 | |
| 256 y_lower = 10 | |
| 257 for i in range(n_clusters): | |
| 258 # Aggregate the silhouette scores for samples belonging to | |
| 259 # cluster i, and sort them | |
| 260 ith_cluster_silhouette_values = \ | |
| 261 sample_silhouette_values[labels == i] | |
| 262 | |
| 263 ith_cluster_silhouette_values.sort() | |
| 264 | |
| 265 size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
| 266 y_upper = y_lower + size_cluster_i | |
| 267 | |
| 268 color = cm.nipy_spectral(float(i) / n_clusters) | |
| 269 ax1.fill_betweenx(np.arange(y_lower, y_upper), | |
| 270 0, ith_cluster_silhouette_values, | |
| 271 facecolor=color, edgecolor=color, alpha=0.7) | |
| 272 | |
| 273 # Label the silhouette plots with their cluster numbers at the middle | |
| 274 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | |
| 275 | |
| 276 # Compute the new y_lower for next plot | |
| 277 y_lower = y_upper + 10 # 10 for the 0 samples | |
| 278 | |
| 279 ax1.set_title("The silhouette plot for the various clusters.") | |
| 280 ax1.set_xlabel("The silhouette coefficient values") | |
| 281 ax1.set_ylabel("Cluster label") | |
| 282 | |
| 283 # The vertical line for average silhouette score of all the values | |
| 284 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | |
| 285 | |
| 286 ax1.set_yticks([]) # Clear the yaxis labels / ticks | |
| 287 ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | |
| 288 | |
| 289 | |
| 290 plt.suptitle(("Silhouette analysis for clustering on sample data " | |
| 291 "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | |
| 292 | |
| 293 | |
| 294 plt.savefig(path, bbox_inches='tight') | |
| 295 | |
| 296 ######################## dbscan ############################################## | |
| 297 | |
| 298 def dbscan(dataset, eps, min_samples, best_cluster): | |
| 299 if not os.path.exists('clustering'): | |
| 300 os.makedirs('clustering') | |
| 301 | |
| 302 if eps is not None: | |
| 303 clusterer = DBSCAN(eps = eps, min_samples = min_samples) | |
| 304 else: | |
| 305 clusterer = DBSCAN() | |
| 306 | |
| 307 clustering = clusterer.fit(dataset) | |
| 308 | |
| 309 core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | |
| 310 core_samples_mask[clustering.core_sample_indices_] = True | |
| 311 labels = clustering.labels_ | |
| 312 | |
| 313 # Number of clusters in labels, ignoring noise if present. | |
| 314 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
| 315 | |
| 316 | |
| 317 labels = labels | |
| 318 predict = [x+1 for x in labels] | |
| 319 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 320 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 321 | |
| 322 | |
| 323 ########################## hierachical ####################################### | |
| 324 | |
| 325 def hierachical_agglomerative(dataset, k_min, k_max, best_cluster, silhouette): | |
| 326 | |
| 327 if not os.path.exists('clustering'): | |
| 328 os.makedirs('clustering') | |
| 329 | |
| 330 plt.figure(figsize=(10, 7)) | |
| 331 plt.title("Classes Dendogram") | |
| 332 shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | |
| 333 fig = plt.gcf() | |
| 334 fig.savefig('clustering/dendogram.png', dpi=200) | |
| 335 | |
| 336 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 337 | |
| 338 scores = [] | |
| 339 labels = [] | |
| 340 | |
| 341 for n_clusters in range_n_clusters: | |
| 342 cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | |
| 343 cluster.fit_predict(dataset) | |
| 344 cluster_labels = cluster.labels_ | |
| 345 labels.append(cluster_labels) | |
| 346 write_to_csv(dataset, cluster_labels, 'clustering/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | |
| 347 | |
| 348 best = max_index(scores) + k_min | |
| 349 | |
| 350 for i in range(len(labels)): | |
| 351 prefix = '' | |
| 352 if (i + k_min == best): | |
| 353 prefix = '_BEST' | |
| 354 if silhouette == 'true': | |
| 355 silihouette_draw(dataset, labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 356 | |
| 357 for i in range(len(labels)): | |
| 358 if (i + k_min == best): | |
| 359 labels = labels[i] | |
| 360 predict = [x+1 for x in labels] | |
| 361 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 362 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 363 | |
| 364 | |
| 365 ############################# main ########################################### | |
| 366 | |
| 367 | |
| 368 def main(): | |
| 369 if not os.path.exists('clustering'): | |
| 370 os.makedirs('clustering') | |
| 371 | |
| 372 args = process_args(sys.argv) | |
| 373 | |
| 374 #Data read | |
| 375 | |
| 376 X = read_dataset(args.input) | |
| 377 X = pd.DataFrame.to_dict(X, orient='list') | |
| 378 X = rewrite_input(X) | |
| 379 X = pd.DataFrame.from_dict(X, orient = 'index') | |
| 380 | |
| 381 for i in X.columns: | |
| 382 tmp = X[i][0] | |
| 383 if tmp == None: | |
| 384 X = X.drop(columns=[i]) | |
| 385 | |
| 386 | |
| 387 if args.cluster_type == 'kmeans': | |
| 388 kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | |
| 389 | |
| 390 if args.cluster_type == 'dbscan': | |
| 391 dbscan(X, args.eps, args.min_samples, args.best_cluster) | |
| 392 | |
| 393 if args.cluster_type == 'hierarchy': | |
| 394 hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | |
| 395 | |
| 396 ############################################################################## | |
| 397 | |
| 398 if __name__ == "__main__": | |
| 399 main() | 
