Mercurial > repos > bimib > marea
comparison marea-1.0.1/marea.py @ 15:d0e7f14b773f draft
Upload 1.0.1
author | bimib |
---|---|
date | Tue, 01 Oct 2019 06:03:12 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
14:1a0c8c2780f2 | 15:d0e7f14b773f |
---|---|
1 from __future__ import division | |
2 import sys | |
3 import pandas as pd | |
4 import itertools as it | |
5 import scipy.stats as st | |
6 import collections | |
7 import lxml.etree as ET | |
8 import shutil | |
9 import pickle as pk | |
10 import math | |
11 import os | |
12 import argparse | |
13 from svglib.svglib import svg2rlg | |
14 from reportlab.graphics import renderPDF | |
15 | |
16 ########################## argparse ########################################## | |
17 | |
18 def process_args(args): | |
19 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
20 description = 'process some value\'s'+ | |
21 ' genes to create a comparison\'s map.') | |
22 parser.add_argument('-rs', '--rules_selector', | |
23 type = str, | |
24 default = 'HMRcore', | |
25 choices = ['HMRcore', 'Recon', 'Custom'], | |
26 help = 'chose which type of dataset you want use') | |
27 parser.add_argument('-cr', '--custom', | |
28 type = str, | |
29 help='your dataset if you want custom rules') | |
30 parser.add_argument('-na', '--names', | |
31 type = str, | |
32 nargs = '+', | |
33 help = 'input names') | |
34 parser.add_argument('-n', '--none', | |
35 type = str, | |
36 default = 'true', | |
37 choices = ['true', 'false'], | |
38 help = 'compute Nan values') | |
39 parser.add_argument('-pv' ,'--pValue', | |
40 type = float, | |
41 default = 0.05, | |
42 help = 'P-Value threshold (default: %(default)s)') | |
43 parser.add_argument('-fc', '--fChange', | |
44 type = float, | |
45 default = 1.5, | |
46 help = 'Fold-Change threshold (default: %(default)s)') | |
47 parser.add_argument('-td', '--tool_dir', | |
48 type = str, | |
49 required = True, | |
50 help = 'your tool directory') | |
51 parser.add_argument('-op', '--option', | |
52 type = str, | |
53 choices = ['datasets', 'dataset_class'], | |
54 help='dataset or dataset and class') | |
55 parser.add_argument('-ol', '--out_log', | |
56 help = "Output log") | |
57 parser.add_argument('-ids', '--input_datas', | |
58 type = str, | |
59 nargs = '+', | |
60 help = 'input datasets') | |
61 parser.add_argument('-id', '--input_data', | |
62 type = str, | |
63 help = 'input dataset') | |
64 parser.add_argument('-ic', '--input_class', | |
65 type = str, | |
66 help = 'sample group specification') | |
67 parser.add_argument('-cm', '--custom_map', | |
68 type = str, | |
69 help = 'custom map') | |
70 parser.add_argument('-yn', '--yes_no', | |
71 type = str, | |
72 choices = ['yes', 'no'], | |
73 help = 'if make or not custom map') | |
74 parser.add_argument('-gs', '--generate_svg', | |
75 type = str, | |
76 default = 'true', | |
77 choices = ['true', 'false'], | |
78 help = 'generate svg map') | |
79 parser.add_argument('-gp', '--generate_pdf', | |
80 type = str, | |
81 default = 'true', | |
82 choices = ['true', 'false'], | |
83 help = 'generate pdf map') | |
84 parser.add_argument('-gr', '--generate_ras', | |
85 type = str, | |
86 default = 'true', | |
87 choices = ['true', 'false'], | |
88 help = 'generate reaction activity score') | |
89 args = parser.parse_args() | |
90 return args | |
91 | |
92 ########################### warning ########################################### | |
93 | |
94 def warning(s): | |
95 args = process_args(sys.argv) | |
96 with open(args.out_log, 'a') as log: | |
97 log.write(s) | |
98 | |
99 ############################ dataset input #################################### | |
100 | |
101 def read_dataset(data, name): | |
102 try: | |
103 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
104 except pd.errors.EmptyDataError: | |
105 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
106 if len(dataset.columns) < 2: | |
107 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
108 return dataset | |
109 | |
110 ############################ dataset name ##################################### | |
111 | |
112 def name_dataset(name_data, count): | |
113 if str(name_data) == 'Dataset': | |
114 return str(name_data) + '_' + str(count) | |
115 else: | |
116 return str(name_data) | |
117 | |
118 ############################ load id e rules ################################## | |
119 | |
120 def load_id_rules(reactions): | |
121 ids, rules = [], [] | |
122 for key, value in reactions.items(): | |
123 ids.append(key) | |
124 rules.append(value) | |
125 return (ids, rules) | |
126 | |
127 ############################ check_methods #################################### | |
128 | |
129 def gene_type(l, name): | |
130 if check_hgnc(l): | |
131 return 'hugo_id' | |
132 elif check_ensembl(l): | |
133 return 'ensembl_gene_id' | |
134 elif check_symbol(l): | |
135 return 'symbol' | |
136 elif check_entrez(l): | |
137 return 'entrez_id' | |
138 else: | |
139 sys.exit('Execution aborted:\n' + | |
140 'gene ID type in ' + name + ' not supported. Supported ID'+ | |
141 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') | |
142 | |
143 def check_hgnc(l): | |
144 if len(l) > 5: | |
145 if (l.upper()).startswith('HGNC:'): | |
146 return l[5:].isdigit() | |
147 else: | |
148 return False | |
149 else: | |
150 return False | |
151 | |
152 def check_ensembl(l): | |
153 if len(l) == 15: | |
154 if (l.upper()).startswith('ENS'): | |
155 return l[4:].isdigit() | |
156 else: | |
157 return False | |
158 else: | |
159 return False | |
160 | |
161 def check_symbol(l): | |
162 if len(l) > 0: | |
163 if l[0].isalpha() and l[1:].isalnum(): | |
164 return True | |
165 else: | |
166 return False | |
167 else: | |
168 return False | |
169 | |
170 def check_entrez(l): | |
171 if len(l) > 0: | |
172 return l.isdigit() | |
173 else: | |
174 return False | |
175 | |
176 def check_bool(b): | |
177 if b == 'true': | |
178 return True | |
179 elif b == 'false': | |
180 return False | |
181 | |
182 ############################ resolve_methods ################################## | |
183 | |
184 def replace_gene_value(l, d): | |
185 tmp = [] | |
186 err = [] | |
187 while l: | |
188 if isinstance(l[0], list): | |
189 tmp_rules, tmp_err = replace_gene_value(l[0], d) | |
190 tmp.append(tmp_rules) | |
191 err.extend(tmp_err) | |
192 else: | |
193 value = replace_gene(l[0], d) | |
194 tmp.append(value) | |
195 if value == None: | |
196 err.append(l[0]) | |
197 l = l[1:] | |
198 return (tmp, err) | |
199 | |
200 def replace_gene(l, d): | |
201 if l =='and' or l == 'or': | |
202 return l | |
203 else: | |
204 value = d.get(l, None) | |
205 if not(value == None or isinstance(value, (int, float))): | |
206 sys.exit('Execution aborted: ' + value + ' value not valid\n') | |
207 return value | |
208 | |
209 def computes(val1, op, val2, cn): | |
210 if val1 != None and val2 != None: | |
211 if op == 'and': | |
212 return min(val1, val2) | |
213 else: | |
214 return val1 + val2 | |
215 elif op == 'and': | |
216 if cn is True: | |
217 if val1 != None: | |
218 return val1 | |
219 elif val2 != None: | |
220 return val2 | |
221 else: | |
222 return None | |
223 else: | |
224 return None | |
225 else: | |
226 if val1 != None: | |
227 return val1 | |
228 elif val2 != None: | |
229 return val2 | |
230 else: | |
231 return None | |
232 | |
233 def control(ris, l, cn): | |
234 if len(l) == 1: | |
235 if isinstance(l[0], (float, int)) or l[0] == None: | |
236 return l[0] | |
237 elif isinstance(l[0], list): | |
238 return control(None, l[0], cn) | |
239 else: | |
240 return False | |
241 elif len(l) > 2: | |
242 return control_list(ris, l, cn) | |
243 else: | |
244 return False | |
245 | |
246 def control_list(ris, l, cn): | |
247 while l: | |
248 if len(l) == 1: | |
249 return False | |
250 elif (isinstance(l[0], (float, int)) or | |
251 l[0] == None) and l[1] in ['and', 'or']: | |
252 if isinstance(l[2], (float, int)) or l[2] == None: | |
253 ris = computes(l[0], l[1], l[2], cn) | |
254 elif isinstance(l[2], list): | |
255 tmp = control(None, l[2], cn) | |
256 if tmp is False: | |
257 return False | |
258 else: | |
259 ris = computes(l[0], l[1], tmp, cn) | |
260 else: | |
261 return False | |
262 l = l[3:] | |
263 elif l[0] in ['and', 'or']: | |
264 if isinstance(l[1], (float, int)) or l[1] == None: | |
265 ris = computes(ris, l[0], l[1], cn) | |
266 elif isinstance(l[1], list): | |
267 tmp = control(None,l[1], cn) | |
268 if tmp is False: | |
269 return False | |
270 else: | |
271 ris = computes(ris, l[0], tmp, cn) | |
272 else: | |
273 return False | |
274 l = l[2:] | |
275 elif isinstance(l[0], list) and l[1] in ['and', 'or']: | |
276 if isinstance(l[2], (float, int)) or l[2] == None: | |
277 tmp = control(None, l[0], cn) | |
278 if tmp is False: | |
279 return False | |
280 else: | |
281 ris = computes(tmp, l[1], l[2], cn) | |
282 elif isinstance(l[2], list): | |
283 tmp = control(None, l[0], cn) | |
284 tmp2 = control(None, l[2], cn) | |
285 if tmp is False or tmp2 is False: | |
286 return False | |
287 else: | |
288 ris = computes(tmp, l[1], tmp2, cn) | |
289 else: | |
290 return False | |
291 l = l[3:] | |
292 else: | |
293 return False | |
294 return ris | |
295 | |
296 ############################ map_methods ###################################### | |
297 | |
298 def fold_change(avg1, avg2): | |
299 if avg1 == 0 and avg2 == 0: | |
300 return 0 | |
301 elif avg1 == 0: | |
302 return '-INF' | |
303 elif avg2 == 0: | |
304 return 'INF' | |
305 else: | |
306 return math.log(avg1 / avg2, 2) | |
307 | |
308 def fix_style(l, col, width, dash): | |
309 tmp = l.split(';') | |
310 flag_col = False | |
311 flag_width = False | |
312 flag_dash = False | |
313 for i in range(len(tmp)): | |
314 if tmp[i].startswith('stroke:'): | |
315 tmp[i] = 'stroke:' + col | |
316 flag_col = True | |
317 if tmp[i].startswith('stroke-width:'): | |
318 tmp[i] = 'stroke-width:' + width | |
319 flag_width = True | |
320 if tmp[i].startswith('stroke-dasharray:'): | |
321 tmp[i] = 'stroke-dasharray:' + dash | |
322 flag_dash = True | |
323 if not flag_col: | |
324 tmp.append('stroke:' + col) | |
325 if not flag_width: | |
326 tmp.append('stroke-width:' + width) | |
327 if not flag_dash: | |
328 tmp.append('stroke-dasharray:' + dash) | |
329 return ';'.join(tmp) | |
330 | |
331 def fix_map(d, core_map, threshold_P_V, threshold_F_C, max_F_C): | |
332 maxT = 12 | |
333 minT = 2 | |
334 grey = '#BEBEBE' | |
335 blue = '#0000FF' | |
336 red = '#E41A1C' | |
337 for el in core_map.iter(): | |
338 el_id = str(el.get('id')) | |
339 if el_id.startswith('R_'): | |
340 tmp = d.get(el_id[2:]) | |
341 if tmp != None: | |
342 p_val = tmp[0] | |
343 f_c = tmp[1] | |
344 if p_val < threshold_P_V: | |
345 if not isinstance(f_c, str): | |
346 if abs(f_c) < math.log(threshold_F_C, 2): | |
347 col = grey | |
348 width = str(minT) | |
349 else: | |
350 if f_c < 0: | |
351 col = blue | |
352 elif f_c > 0: | |
353 col = red | |
354 width = str(max((abs(f_c) * maxT) / max_F_C, minT)) | |
355 else: | |
356 if f_c == '-INF': | |
357 col = blue | |
358 elif f_c == 'INF': | |
359 col = red | |
360 width = str(maxT) | |
361 dash = 'none' | |
362 else: | |
363 dash = '5,5' | |
364 col = grey | |
365 width = str(minT) | |
366 el.set('style', fix_style(el.get('style'), col, width, dash)) | |
367 return core_map | |
368 | |
369 ############################ make recon ####################################### | |
370 | |
371 def check_and_doWord(l): | |
372 tmp = [] | |
373 tmp_genes = [] | |
374 count = 0 | |
375 while l: | |
376 if count >= 0: | |
377 if l[0] == '(': | |
378 count += 1 | |
379 tmp.append(l[0]) | |
380 l.pop(0) | |
381 elif l[0] == ')': | |
382 count -= 1 | |
383 tmp.append(l[0]) | |
384 l.pop(0) | |
385 elif l[0] == ' ': | |
386 l.pop(0) | |
387 else: | |
388 word = [] | |
389 while l: | |
390 if l[0] in [' ', '(', ')']: | |
391 break | |
392 else: | |
393 word.append(l[0]) | |
394 l.pop(0) | |
395 word = ''.join(word) | |
396 tmp.append(word) | |
397 if not(word in ['or', 'and']): | |
398 tmp_genes.append(word) | |
399 else: | |
400 return False | |
401 if count == 0: | |
402 return (tmp, tmp_genes) | |
403 else: | |
404 return False | |
405 | |
406 def brackets_to_list(l): | |
407 tmp = [] | |
408 while l: | |
409 if l[0] == '(': | |
410 l.pop(0) | |
411 tmp.append(resolve_brackets(l)) | |
412 else: | |
413 tmp.append(l[0]) | |
414 l.pop(0) | |
415 return tmp | |
416 | |
417 def resolve_brackets(l): | |
418 tmp = [] | |
419 while l[0] != ')': | |
420 if l[0] == '(': | |
421 l.pop(0) | |
422 tmp.append(resolve_brackets(l)) | |
423 else: | |
424 tmp.append(l[0]) | |
425 l.pop(0) | |
426 l.pop(0) | |
427 return tmp | |
428 | |
429 def priorityAND(l): | |
430 tmp = [] | |
431 flag = True | |
432 while l: | |
433 if len(l) == 1: | |
434 if isinstance(l[0], list): | |
435 tmp.append(priorityAND(l[0])) | |
436 else: | |
437 tmp.append(l[0]) | |
438 l = l[1:] | |
439 elif l[0] == 'or': | |
440 tmp.append(l[0]) | |
441 flag = False | |
442 l = l[1:] | |
443 elif l[1] == 'or': | |
444 if isinstance(l[0], list): | |
445 tmp.append(priorityAND(l[0])) | |
446 else: | |
447 tmp.append(l[0]) | |
448 tmp.append(l[1]) | |
449 flag = False | |
450 l = l[2:] | |
451 elif l[1] == 'and': | |
452 tmpAnd = [] | |
453 if isinstance(l[0], list): | |
454 tmpAnd.append(priorityAND(l[0])) | |
455 else: | |
456 tmpAnd.append(l[0]) | |
457 tmpAnd.append(l[1]) | |
458 if isinstance(l[2], list): | |
459 tmpAnd.append(priorityAND(l[2])) | |
460 else: | |
461 tmpAnd.append(l[2]) | |
462 l = l[3:] | |
463 while l: | |
464 if l[0] == 'and': | |
465 tmpAnd.append(l[0]) | |
466 if isinstance(l[1], list): | |
467 tmpAnd.append(priorityAND(l[1])) | |
468 else: | |
469 tmpAnd.append(l[1]) | |
470 l = l[2:] | |
471 elif l[0] == 'or': | |
472 flag = False | |
473 break | |
474 if flag == True: #when there are only AND in list | |
475 tmp.extend(tmpAnd) | |
476 elif flag == False: | |
477 tmp.append(tmpAnd) | |
478 return tmp | |
479 | |
480 def checkRule(l): | |
481 if len(l) == 1: | |
482 if isinstance(l[0], list): | |
483 if checkRule(l[0]) is False: | |
484 return False | |
485 elif len(l) > 2: | |
486 if checkRule2(l) is False: | |
487 return False | |
488 else: | |
489 return False | |
490 return True | |
491 | |
492 def checkRule2(l): | |
493 while l: | |
494 if len(l) == 1: | |
495 return False | |
496 elif isinstance(l[0], list) and l[1] in ['and', 'or']: | |
497 if checkRule(l[0]) is False: | |
498 return False | |
499 if isinstance(l[2], list): | |
500 if checkRule(l[2]) is False: | |
501 return False | |
502 l = l[3:] | |
503 elif l[1] in ['and', 'or']: | |
504 if isinstance(l[2], list): | |
505 if checkRule(l[2]) is False: | |
506 return False | |
507 l = l[3:] | |
508 elif l[0] in ['and', 'or']: | |
509 if isinstance(l[1], list): | |
510 if checkRule(l[1]) is False: | |
511 return False | |
512 l = l[2:] | |
513 else: | |
514 return False | |
515 return True | |
516 | |
517 def do_rules(rules): | |
518 split_rules = [] | |
519 err_rules = [] | |
520 tmp_gene_in_rule = [] | |
521 for i in range(len(rules)): | |
522 tmp = list(rules[i]) | |
523 if tmp: | |
524 tmp, tmp_genes = check_and_doWord(tmp) | |
525 tmp_gene_in_rule.extend(tmp_genes) | |
526 if tmp is False: | |
527 split_rules.append([]) | |
528 err_rules.append(rules[i]) | |
529 else: | |
530 tmp = brackets_to_list(tmp) | |
531 if checkRule(tmp): | |
532 split_rules.append(priorityAND(tmp)) | |
533 else: | |
534 split_rules.append([]) | |
535 err_rules.append(rules[i]) | |
536 else: | |
537 split_rules.append([]) | |
538 if err_rules: | |
539 warning('Warning: wrong format rule in ' + str(err_rules) + '\n') | |
540 return (split_rules, list(set(tmp_gene_in_rule))) | |
541 | |
542 def make_recon(data): | |
543 try: | |
544 import cobra as cb | |
545 import warnings | |
546 with warnings.catch_warnings(): | |
547 warnings.simplefilter('ignore') | |
548 recon = cb.io.read_sbml_model(data) | |
549 react = recon.reactions | |
550 rules = [react[i].gene_reaction_rule for i in range(len(react))] | |
551 ids = [react[i].id for i in range(len(react))] | |
552 except cb.io.sbml3.CobraSBMLError: | |
553 try: | |
554 data = (pd.read_csv(data, sep = '\t', dtype = str, engine='python')).fillna('') | |
555 if len(data.columns) < 2: | |
556 sys.exit('Execution aborted: wrong format of '+ | |
557 'custom datarules\n') | |
558 if not len(data.columns) == 2: | |
559 warning('Warning: more than 2 columns in custom datarules.\n' + | |
560 'Extra columns have been disregarded\n') | |
561 ids = list(data.iloc[:, 0]) | |
562 rules = list(data.iloc[:, 1]) | |
563 except pd.errors.EmptyDataError: | |
564 sys.exit('Execution aborted: wrong format of custom datarules\n') | |
565 except pd.errors.ParserError: | |
566 sys.exit('Execution aborted: wrong format of custom datarules\n') | |
567 split_rules, tmp_genes = do_rules(rules) | |
568 gene_in_rule = {} | |
569 for i in tmp_genes: | |
570 gene_in_rule[i] = 'ok' | |
571 return (ids, split_rules, gene_in_rule) | |
572 | |
573 ############################ gene ############################################# | |
574 | |
575 def data_gene(gene, type_gene, name, gene_custom): | |
576 args = process_args(sys.argv) | |
577 for i in range(len(gene)): | |
578 tmp = gene.iloc[i, 0] | |
579 if tmp.startswith(' ') or tmp.endswith(' '): | |
580 gene.iloc[i, 0] = (tmp.lstrip()).rstrip() | |
581 gene_dup = [item for item, count in | |
582 collections.Counter(gene[gene.columns[0]]).items() if count > 1] | |
583 pat_dup = [item for item, count in | |
584 collections.Counter(list(gene.columns)).items() if count > 1] | |
585 if gene_dup: | |
586 if gene_custom == None: | |
587 if args.rules_selector == 'HMRcore': | |
588 gene_in_rule = pk.load(open(args.tool_dir + | |
589 '/local/HMRcore_genes.p', 'rb')) | |
590 elif args.rules_selector == 'Recon': | |
591 gene_in_rule = pk.load(open(args.tool_dir + | |
592 '/local/Recon_genes.p', 'rb')) | |
593 gene_in_rule = gene_in_rule.get(type_gene) | |
594 else: | |
595 gene_in_rule = gene_custom | |
596 tmp = [] | |
597 for i in gene_dup: | |
598 if gene_in_rule.get(i) == 'ok': | |
599 tmp.append(i) | |
600 if tmp: | |
601 sys.exit('Execution aborted because gene ID ' | |
602 +str(tmp)+' in '+name+' is duplicated\n') | |
603 if pat_dup: | |
604 warning('Warning: duplicated label\n' + str(pat_dup) + 'in ' + name + | |
605 '\n') | |
606 return (gene.set_index(gene.columns[0])).to_dict() | |
607 | |
608 ############################ resolve ########################################## | |
609 | |
610 def resolve(genes, rules, ids, resolve_none, name): | |
611 resolve_rules = {} | |
612 not_found = [] | |
613 flag = False | |
614 for key, value in genes.items(): | |
615 tmp_resolve = [] | |
616 for i in range(len(rules)): | |
617 tmp = rules[i] | |
618 if tmp: | |
619 tmp, err = replace_gene_value(tmp, value) | |
620 if err: | |
621 not_found.extend(err) | |
622 ris = control(None, tmp, resolve_none) | |
623 if ris is False or ris == None: | |
624 tmp_resolve.append(None) | |
625 else: | |
626 tmp_resolve.append(ris) | |
627 flag = True | |
628 else: | |
629 tmp_resolve.append(None) | |
630 resolve_rules[key] = tmp_resolve | |
631 if flag is False: | |
632 warning('Warning: no computable score (due to missing gene values)' + | |
633 'for class ' + name + ', the class has been disregarded\n') | |
634 return (None, None) | |
635 return (resolve_rules, list(set(not_found))) | |
636 | |
637 ############################ split class ###################################### | |
638 | |
639 def split_class(classes, resolve_rules): | |
640 class_pat = {} | |
641 for i in range(len(classes)): | |
642 classe = classes.iloc[i, 1] | |
643 if not pd.isnull(classe): | |
644 l = [] | |
645 for j in range(i, len(classes)): | |
646 if classes.iloc[j, 1] == classe: | |
647 pat_id = classes.iloc[j, 0] | |
648 tmp = resolve_rules.get(pat_id, None) | |
649 if tmp != None: | |
650 l.append(tmp) | |
651 classes.iloc[j, 1] = None | |
652 if l: | |
653 class_pat[classe] = list(map(list, zip(*l))) | |
654 else: | |
655 warning('Warning: no sample found in class ' + classe + | |
656 ', the class has been disregarded\n') | |
657 return class_pat | |
658 | |
659 ############################ create_ras ####################################### | |
660 | |
661 def create_ras (resolve_rules, dataset_name): | |
662 | |
663 if resolve_rules == None: | |
664 warning("Couldn't generate RAS for current dataset: " + dataset_name) | |
665 | |
666 for geni in resolve_rules.values(): | |
667 for i, valori in enumerate(geni): | |
668 if valori == None: | |
669 geni[i] = 'None' | |
670 | |
671 output_ras = pd.DataFrame.from_dict(resolve_rules) | |
672 output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) | |
673 | |
674 text_file = open("ras/Reaction_Activity_Score_Of_" + dataset_name + ".tsv", "w") | |
675 text_file.write(output_to_csv) | |
676 text_file.close() | |
677 | |
678 ############################ map ############################################## | |
679 | |
680 def maps(core_map, class_pat, ids, threshold_P_V, threshold_F_C, create_svg, create_pdf): | |
681 args = process_args(sys.argv) | |
682 if (not class_pat) or (len(class_pat.keys()) < 2): | |
683 sys.exit('Execution aborted: classes provided for comparisons are ' + | |
684 'less than two\n') | |
685 for i, j in it.combinations(class_pat.keys(), 2): | |
686 tmp = {} | |
687 count = 0 | |
688 max_F_C = 0 | |
689 for l1, l2 in zip(class_pat.get(i), class_pat.get(j)): | |
690 try: | |
691 stat_D, p_value = st.ks_2samp(l1, l2) | |
692 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
693 if not isinstance(avg, str): | |
694 if max_F_C < abs(avg): | |
695 max_F_C = abs(avg) | |
696 tmp[ids[count]] = [float(p_value), avg] | |
697 count += 1 | |
698 except (TypeError, ZeroDivisionError): | |
699 count += 1 | |
700 tab = 'result/' + i + '_vs_' + j + ' (Tabular Result).tsv' | |
701 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") | |
702 tmp_csv = tmp_csv.reset_index() | |
703 header = ['ids', 'P_Value', 'Average'] | |
704 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) | |
705 | |
706 if create_svg or create_pdf: | |
707 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' | |
708 and args.yes_no == 'yes'): | |
709 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) | |
710 file_svg = 'result/' + i + '_vs_' + j + ' (SVG Map).svg' | |
711 with open(file_svg, 'wb') as new_map: | |
712 new_map.write(ET.tostring(core_map)) | |
713 | |
714 | |
715 if create_pdf: | |
716 file_pdf = 'result/' + i + '_vs_' + j + ' (PDF Map).pdf' | |
717 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) | |
718 | |
719 if not create_svg: | |
720 #Ho utilizzato il file svg per generare il pdf, | |
721 #ma l'utente non ne ha richiesto il ritorno, quindi | |
722 #lo elimino | |
723 os.remove('result/' + i + '_vs_' + j + ' (SVG Map).svg') | |
724 | |
725 return None | |
726 | |
727 ############################ MAIN ############################################# | |
728 | |
729 def main(): | |
730 args = process_args(sys.argv) | |
731 | |
732 create_svg = check_bool(args.generate_svg) | |
733 create_pdf = check_bool(args.generate_pdf) | |
734 generate_ras = check_bool(args.generate_ras) | |
735 | |
736 os.makedirs('result') | |
737 | |
738 if generate_ras: | |
739 os.makedirs('ras') | |
740 | |
741 if args.rules_selector == 'HMRcore': | |
742 recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) | |
743 elif args.rules_selector == 'Recon': | |
744 recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) | |
745 elif args.rules_selector == 'Custom': | |
746 ids, rules, gene_in_rule = make_recon(args.custom) | |
747 | |
748 resolve_none = check_bool(args.none) | |
749 | |
750 class_pat = {} | |
751 | |
752 if args.option == 'datasets': | |
753 num = 1 | |
754 for i, j in zip(args.input_datas, args.names): | |
755 | |
756 name = name_dataset(j, num) | |
757 dataset = read_dataset(i, name) | |
758 | |
759 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | |
760 | |
761 type_gene = gene_type(dataset.iloc[0, 0], name) | |
762 | |
763 if args.rules_selector != 'Custom': | |
764 genes = data_gene(dataset, type_gene, name, None) | |
765 ids, rules = load_id_rules(recon.get(type_gene)) | |
766 elif args.rules_selector == 'Custom': | |
767 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
768 | |
769 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | |
770 | |
771 if generate_ras: | |
772 create_ras(resolve_rules, name) | |
773 | |
774 | |
775 if err != None and err: | |
776 warning('Warning: gene\n' + str(err) + '\nnot found in class ' | |
777 + name + ', the expression level for this gene ' + | |
778 'will be considered NaN\n') | |
779 if resolve_rules != None: | |
780 class_pat[name] = list(map(list, zip(*resolve_rules.values()))) | |
781 num += 1 | |
782 elif args.option == 'dataset_class': | |
783 name = 'RNAseq' | |
784 dataset = read_dataset(args.input_data, name) | |
785 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | |
786 type_gene = gene_type(dataset.iloc[0, 0], name) | |
787 classes = read_dataset(args.input_class, 'class') | |
788 if not len(classes.columns) == 2: | |
789 warning('Warning: more than 2 columns in class file. Extra' + | |
790 'columns have been disregarded\n') | |
791 classes = classes.astype(str) | |
792 if args.rules_selector != 'Custom': | |
793 genes = data_gene(dataset, type_gene, name, None) | |
794 ids, rules = load_id_rules(recon.get(type_gene)) | |
795 elif args.rules_selector == 'Custom': | |
796 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
797 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | |
798 if err != None and err: | |
799 warning('Warning: gene\n'+str(err)+'\nnot found in class ' | |
800 + name + ', the expression level for this gene ' + | |
801 'will be considered NaN\n') | |
802 if resolve_rules != None: | |
803 class_pat = split_class(classes, resolve_rules) | |
804 | |
805 if args.rules_selector == 'Custom': | |
806 if args.yes_no == 'yes': | |
807 try: | |
808 core_map = ET.parse(args.custom_map) | |
809 except (ET.XMLSyntaxError, ET.XMLSchemaParseError): | |
810 sys.exit('Execution aborted: custom map in wrong format') | |
811 elif args.yes_no == 'no': | |
812 core_map = ET.parse(args.tool_dir + '/local/HMRcoreMap.svg') | |
813 else: | |
814 core_map = ET.parse(args.tool_dir+'/local/HMRcoreMap.svg') | |
815 | |
816 maps(core_map, class_pat, ids, args.pValue, args.fChange, create_svg, create_pdf) | |
817 | |
818 print('Execution succeded') | |
819 | |
820 return None | |
821 | |
822 ############################################################################### | |
823 | |
824 if __name__ == "__main__": | |
825 main() |