Mercurial > repos > bimib > marea
comparison marea-1.0.1/marea_cluster.py @ 15:d0e7f14b773f draft
Upload 1.0.1
| author | bimib |
|---|---|
| date | Tue, 01 Oct 2019 06:03:12 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 14:1a0c8c2780f2 | 15:d0e7f14b773f |
|---|---|
| 1 # -*- coding: utf-8 -*- | |
| 2 """ | |
| 3 Created on Mon Jun 3 19:51:00 2019 | |
| 4 | |
| 5 @author: Narger | |
| 6 """ | |
| 7 | |
| 8 import sys | |
| 9 import argparse | |
| 10 import os | |
| 11 from sklearn.datasets import make_blobs | |
| 12 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
| 13 from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score, cluster | |
| 14 import matplotlib.pyplot as plt | |
| 15 import scipy.cluster.hierarchy as shc | |
| 16 import matplotlib.cm as cm | |
| 17 import numpy as np | |
| 18 import pandas as pd | |
| 19 | |
| 20 ################################# process args ############################### | |
| 21 | |
| 22 def process_args(args): | |
| 23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 24 description = 'process some value\'s' + | |
| 25 ' genes to create class.') | |
| 26 | |
| 27 parser.add_argument('-ol', '--out_log', | |
| 28 help = "Output log") | |
| 29 | |
| 30 parser.add_argument('-in', '--input', | |
| 31 type = str, | |
| 32 help = 'input dataset') | |
| 33 | |
| 34 parser.add_argument('-cy', '--cluster_type', | |
| 35 type = str, | |
| 36 choices = ['kmeans', 'meanshift', 'dbscan', 'hierarchy'], | |
| 37 default = 'kmeans', | |
| 38 help = 'choose clustering algorythm') | |
| 39 | |
| 40 parser.add_argument('-k1', '--k_min', | |
| 41 type = int, | |
| 42 default = 2, | |
| 43 help = 'choose minimun cluster number to be generated') | |
| 44 | |
| 45 parser.add_argument('-k2', '--k_max', | |
| 46 type = int, | |
| 47 default = 7, | |
| 48 help = 'choose maximum cluster number to be generated') | |
| 49 | |
| 50 parser.add_argument('-el', '--elbow', | |
| 51 type = str, | |
| 52 default = 'false', | |
| 53 choices = ['true', 'false'], | |
| 54 help = 'choose if you want to generate an elbow plot for kmeans') | |
| 55 | |
| 56 parser.add_argument('-si', '--silhouette', | |
| 57 type = str, | |
| 58 default = 'false', | |
| 59 choices = ['true', 'false'], | |
| 60 help = 'choose if you want silhouette plots') | |
| 61 | |
| 62 parser.add_argument('-db', '--davies', | |
| 63 type = str, | |
| 64 default = 'false', | |
| 65 choices = ['true', 'false'], | |
| 66 help = 'choose if you want davies bouldin scores') | |
| 67 | |
| 68 parser.add_argument('-td', '--tool_dir', | |
| 69 type = str, | |
| 70 required = True, | |
| 71 help = 'your tool directory') | |
| 72 | |
| 73 parser.add_argument('-ms', '--min_samples', | |
| 74 type = int, | |
| 75 help = 'min samples for dbscan (optional)') | |
| 76 | |
| 77 parser.add_argument('-ep', '--eps', | |
| 78 type = int, | |
| 79 help = 'eps for dbscan (optional)') | |
| 80 | |
| 81 | |
| 82 args = parser.parse_args() | |
| 83 return args | |
| 84 | |
| 85 ########################### warning ########################################### | |
| 86 | |
| 87 def warning(s): | |
| 88 args = process_args(sys.argv) | |
| 89 with open(args.out_log, 'a') as log: | |
| 90 log.write(s + "\n\n") | |
| 91 print(s) | |
| 92 | |
| 93 ########################## read dataset ###################################### | |
| 94 | |
| 95 def read_dataset(dataset): | |
| 96 try: | |
| 97 dataset = pd.read_csv(dataset, sep = '\t', header = 0) | |
| 98 except pd.errors.EmptyDataError: | |
| 99 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 100 if len(dataset.columns) < 2: | |
| 101 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 102 return dataset | |
| 103 | |
| 104 ############################ rewrite_input ################################### | |
| 105 | |
| 106 def rewrite_input(dataset): | |
| 107 #Riscrivo il dataset come dizionario di liste, | |
| 108 #non come dizionario di dizionari | |
| 109 | |
| 110 for key, val in dataset.items(): | |
| 111 l = [] | |
| 112 for i in val: | |
| 113 if i == 'None': | |
| 114 l.append(None) | |
| 115 else: | |
| 116 l.append(float(i)) | |
| 117 | |
| 118 dataset[key] = l | |
| 119 | |
| 120 return dataset | |
| 121 | |
| 122 ############################## write to csv ################################## | |
| 123 | |
| 124 def write_to_csv (dataset, labels, name): | |
| 125 list_labels = labels | |
| 126 list_values = dataset | |
| 127 | |
| 128 list_values = list_values.tolist() | |
| 129 d = {'Label' : list_labels, 'Value' : list_values} | |
| 130 | |
| 131 df = pd.DataFrame(d, columns=['Value','Label']) | |
| 132 | |
| 133 dest = name + '.tsv' | |
| 134 df.to_csv(dest, sep = '\t', index = False, | |
| 135 header = ['Value', 'Label']) | |
| 136 | |
| 137 ########################### trova il massimo in lista ######################## | |
| 138 def max_index (lista): | |
| 139 best = -1 | |
| 140 best_index = 0 | |
| 141 for i in range(len(lista)): | |
| 142 if lista[i] > best: | |
| 143 best = lista [i] | |
| 144 best_index = i | |
| 145 | |
| 146 return best_index | |
| 147 | |
| 148 ################################ kmeans ##################################### | |
| 149 | |
| 150 def kmeans (k_min, k_max, dataset, elbow, silhouette, davies): | |
| 151 if not os.path.exists('clustering/kmeans_output'): | |
| 152 os.makedirs('clustering/kmeans_output') | |
| 153 | |
| 154 | |
| 155 if elbow == 'true': | |
| 156 elbow = True | |
| 157 else: | |
| 158 elbow = False | |
| 159 | |
| 160 if silhouette == 'true': | |
| 161 silhouette = True | |
| 162 else: | |
| 163 silhouette = False | |
| 164 | |
| 165 if davies == 'true': | |
| 166 davies = True | |
| 167 else: | |
| 168 davies = False | |
| 169 | |
| 170 | |
| 171 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 172 distortions = [] | |
| 173 scores = [] | |
| 174 all_labels = [] | |
| 175 | |
| 176 for n_clusters in range_n_clusters: | |
| 177 clusterer = KMeans(n_clusters=n_clusters, random_state=10) | |
| 178 cluster_labels = clusterer.fit_predict(dataset) | |
| 179 | |
| 180 all_labels.append(cluster_labels) | |
| 181 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
| 182 scores.append(silhouette_avg) | |
| 183 distortions.append(clusterer.fit(dataset).inertia_) | |
| 184 | |
| 185 best = max_index(scores) + k_min | |
| 186 | |
| 187 for i in range(len(all_labels)): | |
| 188 prefix = '' | |
| 189 if (i + k_min == best): | |
| 190 prefix = '_BEST' | |
| 191 | |
| 192 write_to_csv(dataset, all_labels[i], 'clustering/kmeans_output/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | |
| 193 | |
| 194 if davies: | |
| 195 with np.errstate(divide='ignore', invalid='ignore'): | |
| 196 davies_bouldin = davies_bouldin_score(dataset, all_labels[i]) | |
| 197 warning("\nFor n_clusters = " + str(i + k_min) + | |
| 198 " The average davies bouldin score is: " + str(davies_bouldin)) | |
| 199 | |
| 200 | |
| 201 if silhouette: | |
| 202 silihouette_draw(dataset, all_labels[i], i + k_min, 'clustering/kmeans_output/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 203 | |
| 204 | |
| 205 if elbow: | |
| 206 elbow_plot(distortions, k_min,k_max) | |
| 207 | |
| 208 | |
| 209 | |
| 210 | |
| 211 | |
| 212 ############################## elbow_plot #################################### | |
| 213 | |
| 214 def elbow_plot (distortions, k_min, k_max): | |
| 215 plt.figure(0) | |
| 216 plt.plot(range(k_min, k_max+1), distortions, marker = 'o') | |
| 217 plt.xlabel('Number of cluster') | |
| 218 plt.ylabel('Distortion') | |
| 219 s = 'clustering/kmeans_output/elbow_plot.png' | |
| 220 fig = plt.gcf() | |
| 221 fig.set_size_inches(18.5, 10.5, forward = True) | |
| 222 fig.savefig(s, dpi=100) | |
| 223 | |
| 224 | |
| 225 ############################## silhouette plot ############################### | |
| 226 def silihouette_draw(dataset, labels, n_clusters, path): | |
| 227 silhouette_avg = silhouette_score(dataset, labels) | |
| 228 warning("For n_clusters = " + str(n_clusters) + | |
| 229 " The average silhouette_score is: " + str(silhouette_avg)) | |
| 230 | |
| 231 plt.close('all') | |
| 232 # Create a subplot with 1 row and 2 columns | |
| 233 fig, (ax1) = plt.subplots(1, 1) | |
| 234 | |
| 235 fig.set_size_inches(18, 7) | |
| 236 | |
| 237 # The 1st subplot is the silhouette plot | |
| 238 # The silhouette coefficient can range from -1, 1 but in this example all | |
| 239 # lie within [-0.1, 1] | |
| 240 ax1.set_xlim([-1, 1]) | |
| 241 # The (n_clusters+1)*10 is for inserting blank space between silhouette | |
| 242 # plots of individual clusters, to demarcate them clearly. | |
| 243 ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | |
| 244 | |
| 245 # Compute the silhouette scores for each sample | |
| 246 sample_silhouette_values = silhouette_samples(dataset, labels) | |
| 247 | |
| 248 y_lower = 10 | |
| 249 for i in range(n_clusters): | |
| 250 # Aggregate the silhouette scores for samples belonging to | |
| 251 # cluster i, and sort them | |
| 252 ith_cluster_silhouette_values = \ | |
| 253 sample_silhouette_values[labels == i] | |
| 254 | |
| 255 ith_cluster_silhouette_values.sort() | |
| 256 | |
| 257 size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
| 258 y_upper = y_lower + size_cluster_i | |
| 259 | |
| 260 color = cm.nipy_spectral(float(i) / n_clusters) | |
| 261 ax1.fill_betweenx(np.arange(y_lower, y_upper), | |
| 262 0, ith_cluster_silhouette_values, | |
| 263 facecolor=color, edgecolor=color, alpha=0.7) | |
| 264 | |
| 265 # Label the silhouette plots with their cluster numbers at the middle | |
| 266 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | |
| 267 | |
| 268 # Compute the new y_lower for next plot | |
| 269 y_lower = y_upper + 10 # 10 for the 0 samples | |
| 270 | |
| 271 ax1.set_title("The silhouette plot for the various clusters.") | |
| 272 ax1.set_xlabel("The silhouette coefficient values") | |
| 273 ax1.set_ylabel("Cluster label") | |
| 274 | |
| 275 # The vertical line for average silhouette score of all the values | |
| 276 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | |
| 277 | |
| 278 ax1.set_yticks([]) # Clear the yaxis labels / ticks | |
| 279 ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | |
| 280 | |
| 281 | |
| 282 plt.suptitle(("Silhouette analysis for clustering on sample data " | |
| 283 "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | |
| 284 | |
| 285 | |
| 286 plt.savefig(path, bbox_inches='tight') | |
| 287 | |
| 288 ######################## dbscan ############################################## | |
| 289 | |
| 290 def dbscan(dataset, eps, min_samples): | |
| 291 if not os.path.exists('clustering/dbscan_output'): | |
| 292 os.makedirs('clustering/dbscan_output') | |
| 293 | |
| 294 if eps is not None: | |
| 295 clusterer = DBSCAN(eps = eps, min_samples = min_samples) | |
| 296 else: | |
| 297 clusterer = DBSCAN() | |
| 298 | |
| 299 clustering = clusterer.fit(dataset) | |
| 300 | |
| 301 core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | |
| 302 core_samples_mask[clustering.core_sample_indices_] = True | |
| 303 labels = clustering.labels_ | |
| 304 | |
| 305 # Number of clusters in labels, ignoring noise if present. | |
| 306 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
| 307 | |
| 308 silhouette_avg = silhouette_score(dataset, labels) | |
| 309 warning("For n_clusters =" + str(n_clusters_) + | |
| 310 "The average silhouette_score is :" + str(silhouette_avg)) | |
| 311 | |
| 312 ##TODO: PLOT SU DBSCAN (no centers) e HIERARCHICAL | |
| 313 | |
| 314 # Black removed and is used for noise instead. | |
| 315 unique_labels = set(labels) | |
| 316 colors = [plt.cm.Spectral(each) | |
| 317 for each in np.linspace(0, 1, len(unique_labels))] | |
| 318 for k, col in zip(unique_labels, colors): | |
| 319 if k == -1: | |
| 320 # Black used for noise. | |
| 321 col = [0, 0, 0, 1] | |
| 322 | |
| 323 class_member_mask = (labels == k) | |
| 324 | |
| 325 xy = dataset[class_member_mask & core_samples_mask] | |
| 326 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), | |
| 327 markeredgecolor='k', markersize=14) | |
| 328 | |
| 329 xy = dataset[class_member_mask & ~core_samples_mask] | |
| 330 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), | |
| 331 markeredgecolor='k', markersize=6) | |
| 332 | |
| 333 plt.title('Estimated number of clusters: %d' % n_clusters_) | |
| 334 s = 'clustering/dbscan_output/dbscan_plot.png' | |
| 335 fig = plt.gcf() | |
| 336 fig.set_size_inches(18.5, 10.5, forward = True) | |
| 337 fig.savefig(s, dpi=100) | |
| 338 | |
| 339 | |
| 340 write_to_csv(dataset, labels, 'clustering/dbscan_output/dbscan_results.tsv') | |
| 341 | |
| 342 ########################## hierachical ####################################### | |
| 343 | |
| 344 def hierachical_agglomerative(dataset, k_min, k_max): | |
| 345 | |
| 346 if not os.path.exists('clustering/agglomerative_output'): | |
| 347 os.makedirs('clustering/agglomerative_output') | |
| 348 | |
| 349 plt.figure(figsize=(10, 7)) | |
| 350 plt.title("Customer Dendograms") | |
| 351 shc.dendrogram(shc.linkage(dataset, method='ward')) | |
| 352 fig = plt.gcf() | |
| 353 fig.savefig('clustering/agglomerative_output/dendogram.png', dpi=200) | |
| 354 | |
| 355 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 356 | |
| 357 for n_clusters in range_n_clusters: | |
| 358 | |
| 359 cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | |
| 360 cluster.fit_predict(dataset) | |
| 361 cluster_labels = cluster.labels_ | |
| 362 | |
| 363 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
| 364 warning("For n_clusters =", n_clusters, | |
| 365 "The average silhouette_score is :", silhouette_avg) | |
| 366 | |
| 367 plt.clf() | |
| 368 plt.figure(figsize=(10, 7)) | |
| 369 plt.title("Agglomerative Hierarchical Clustering\nwith " + str(n_clusters) + " clusters and " + str(silhouette_avg) + " silhouette score") | |
| 370 plt.scatter(dataset[:,0], dataset[:,1], c = cluster_labels, cmap='rainbow') | |
| 371 s = 'clustering/agglomerative_output/hierachical_' + str(n_clusters) + '_clusters.png' | |
| 372 fig = plt.gcf() | |
| 373 fig.set_size_inches(10, 7, forward = True) | |
| 374 fig.savefig(s, dpi=200) | |
| 375 | |
| 376 write_to_csv(dataset, cluster_labels, 'clustering/agglomerative_output/agglomerative_hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | |
| 377 | |
| 378 | |
| 379 | |
| 380 | |
| 381 ############################# main ########################################### | |
| 382 | |
| 383 | |
| 384 def main(): | |
| 385 if not os.path.exists('clustering'): | |
| 386 os.makedirs('clustering') | |
| 387 | |
| 388 args = process_args(sys.argv) | |
| 389 | |
| 390 #Data read | |
| 391 | |
| 392 X = read_dataset(args.input) | |
| 393 X = pd.DataFrame.to_dict(X, orient='list') | |
| 394 X = rewrite_input(X) | |
| 395 X = pd.DataFrame.from_dict(X, orient = 'index') | |
| 396 | |
| 397 for i in X.columns: | |
| 398 tmp = X[i][0] | |
| 399 if tmp == None: | |
| 400 X = X.drop(columns=[i]) | |
| 401 | |
| 402 X = pd.DataFrame.to_numpy(X) | |
| 403 | |
| 404 | |
| 405 if args.cluster_type == 'kmeans': | |
| 406 kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.davies) | |
| 407 | |
| 408 if args.cluster_type == 'dbscan': | |
| 409 dbscan(X, args.eps, args.min_samples) | |
| 410 | |
| 411 if args.cluster_type == 'hierarchy': | |
| 412 hierachical_agglomerative(X, args.k_min, args.k_max) | |
| 413 | |
| 414 ############################################################################## | |
| 415 | |
| 416 if __name__ == "__main__": | |
| 417 main() |
