Mercurial > repos > bimib > marea
comparison marea-1.0.1/marea_cluster.py @ 15:d0e7f14b773f draft
Upload 1.0.1
author | bimib |
---|---|
date | Tue, 01 Oct 2019 06:03:12 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
14:1a0c8c2780f2 | 15:d0e7f14b773f |
---|---|
1 # -*- coding: utf-8 -*- | |
2 """ | |
3 Created on Mon Jun 3 19:51:00 2019 | |
4 | |
5 @author: Narger | |
6 """ | |
7 | |
8 import sys | |
9 import argparse | |
10 import os | |
11 from sklearn.datasets import make_blobs | |
12 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
13 from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score, cluster | |
14 import matplotlib.pyplot as plt | |
15 import scipy.cluster.hierarchy as shc | |
16 import matplotlib.cm as cm | |
17 import numpy as np | |
18 import pandas as pd | |
19 | |
20 ################################# process args ############################### | |
21 | |
22 def process_args(args): | |
23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
24 description = 'process some value\'s' + | |
25 ' genes to create class.') | |
26 | |
27 parser.add_argument('-ol', '--out_log', | |
28 help = "Output log") | |
29 | |
30 parser.add_argument('-in', '--input', | |
31 type = str, | |
32 help = 'input dataset') | |
33 | |
34 parser.add_argument('-cy', '--cluster_type', | |
35 type = str, | |
36 choices = ['kmeans', 'meanshift', 'dbscan', 'hierarchy'], | |
37 default = 'kmeans', | |
38 help = 'choose clustering algorythm') | |
39 | |
40 parser.add_argument('-k1', '--k_min', | |
41 type = int, | |
42 default = 2, | |
43 help = 'choose minimun cluster number to be generated') | |
44 | |
45 parser.add_argument('-k2', '--k_max', | |
46 type = int, | |
47 default = 7, | |
48 help = 'choose maximum cluster number to be generated') | |
49 | |
50 parser.add_argument('-el', '--elbow', | |
51 type = str, | |
52 default = 'false', | |
53 choices = ['true', 'false'], | |
54 help = 'choose if you want to generate an elbow plot for kmeans') | |
55 | |
56 parser.add_argument('-si', '--silhouette', | |
57 type = str, | |
58 default = 'false', | |
59 choices = ['true', 'false'], | |
60 help = 'choose if you want silhouette plots') | |
61 | |
62 parser.add_argument('-db', '--davies', | |
63 type = str, | |
64 default = 'false', | |
65 choices = ['true', 'false'], | |
66 help = 'choose if you want davies bouldin scores') | |
67 | |
68 parser.add_argument('-td', '--tool_dir', | |
69 type = str, | |
70 required = True, | |
71 help = 'your tool directory') | |
72 | |
73 parser.add_argument('-ms', '--min_samples', | |
74 type = int, | |
75 help = 'min samples for dbscan (optional)') | |
76 | |
77 parser.add_argument('-ep', '--eps', | |
78 type = int, | |
79 help = 'eps for dbscan (optional)') | |
80 | |
81 | |
82 args = parser.parse_args() | |
83 return args | |
84 | |
85 ########################### warning ########################################### | |
86 | |
87 def warning(s): | |
88 args = process_args(sys.argv) | |
89 with open(args.out_log, 'a') as log: | |
90 log.write(s + "\n\n") | |
91 print(s) | |
92 | |
93 ########################## read dataset ###################################### | |
94 | |
95 def read_dataset(dataset): | |
96 try: | |
97 dataset = pd.read_csv(dataset, sep = '\t', header = 0) | |
98 except pd.errors.EmptyDataError: | |
99 sys.exit('Execution aborted: wrong format of dataset\n') | |
100 if len(dataset.columns) < 2: | |
101 sys.exit('Execution aborted: wrong format of dataset\n') | |
102 return dataset | |
103 | |
104 ############################ rewrite_input ################################### | |
105 | |
106 def rewrite_input(dataset): | |
107 #Riscrivo il dataset come dizionario di liste, | |
108 #non come dizionario di dizionari | |
109 | |
110 for key, val in dataset.items(): | |
111 l = [] | |
112 for i in val: | |
113 if i == 'None': | |
114 l.append(None) | |
115 else: | |
116 l.append(float(i)) | |
117 | |
118 dataset[key] = l | |
119 | |
120 return dataset | |
121 | |
122 ############################## write to csv ################################## | |
123 | |
124 def write_to_csv (dataset, labels, name): | |
125 list_labels = labels | |
126 list_values = dataset | |
127 | |
128 list_values = list_values.tolist() | |
129 d = {'Label' : list_labels, 'Value' : list_values} | |
130 | |
131 df = pd.DataFrame(d, columns=['Value','Label']) | |
132 | |
133 dest = name + '.tsv' | |
134 df.to_csv(dest, sep = '\t', index = False, | |
135 header = ['Value', 'Label']) | |
136 | |
137 ########################### trova il massimo in lista ######################## | |
138 def max_index (lista): | |
139 best = -1 | |
140 best_index = 0 | |
141 for i in range(len(lista)): | |
142 if lista[i] > best: | |
143 best = lista [i] | |
144 best_index = i | |
145 | |
146 return best_index | |
147 | |
148 ################################ kmeans ##################################### | |
149 | |
150 def kmeans (k_min, k_max, dataset, elbow, silhouette, davies): | |
151 if not os.path.exists('clustering/kmeans_output'): | |
152 os.makedirs('clustering/kmeans_output') | |
153 | |
154 | |
155 if elbow == 'true': | |
156 elbow = True | |
157 else: | |
158 elbow = False | |
159 | |
160 if silhouette == 'true': | |
161 silhouette = True | |
162 else: | |
163 silhouette = False | |
164 | |
165 if davies == 'true': | |
166 davies = True | |
167 else: | |
168 davies = False | |
169 | |
170 | |
171 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
172 distortions = [] | |
173 scores = [] | |
174 all_labels = [] | |
175 | |
176 for n_clusters in range_n_clusters: | |
177 clusterer = KMeans(n_clusters=n_clusters, random_state=10) | |
178 cluster_labels = clusterer.fit_predict(dataset) | |
179 | |
180 all_labels.append(cluster_labels) | |
181 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
182 scores.append(silhouette_avg) | |
183 distortions.append(clusterer.fit(dataset).inertia_) | |
184 | |
185 best = max_index(scores) + k_min | |
186 | |
187 for i in range(len(all_labels)): | |
188 prefix = '' | |
189 if (i + k_min == best): | |
190 prefix = '_BEST' | |
191 | |
192 write_to_csv(dataset, all_labels[i], 'clustering/kmeans_output/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | |
193 | |
194 if davies: | |
195 with np.errstate(divide='ignore', invalid='ignore'): | |
196 davies_bouldin = davies_bouldin_score(dataset, all_labels[i]) | |
197 warning("\nFor n_clusters = " + str(i + k_min) + | |
198 " The average davies bouldin score is: " + str(davies_bouldin)) | |
199 | |
200 | |
201 if silhouette: | |
202 silihouette_draw(dataset, all_labels[i], i + k_min, 'clustering/kmeans_output/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
203 | |
204 | |
205 if elbow: | |
206 elbow_plot(distortions, k_min,k_max) | |
207 | |
208 | |
209 | |
210 | |
211 | |
212 ############################## elbow_plot #################################### | |
213 | |
214 def elbow_plot (distortions, k_min, k_max): | |
215 plt.figure(0) | |
216 plt.plot(range(k_min, k_max+1), distortions, marker = 'o') | |
217 plt.xlabel('Number of cluster') | |
218 plt.ylabel('Distortion') | |
219 s = 'clustering/kmeans_output/elbow_plot.png' | |
220 fig = plt.gcf() | |
221 fig.set_size_inches(18.5, 10.5, forward = True) | |
222 fig.savefig(s, dpi=100) | |
223 | |
224 | |
225 ############################## silhouette plot ############################### | |
226 def silihouette_draw(dataset, labels, n_clusters, path): | |
227 silhouette_avg = silhouette_score(dataset, labels) | |
228 warning("For n_clusters = " + str(n_clusters) + | |
229 " The average silhouette_score is: " + str(silhouette_avg)) | |
230 | |
231 plt.close('all') | |
232 # Create a subplot with 1 row and 2 columns | |
233 fig, (ax1) = plt.subplots(1, 1) | |
234 | |
235 fig.set_size_inches(18, 7) | |
236 | |
237 # The 1st subplot is the silhouette plot | |
238 # The silhouette coefficient can range from -1, 1 but in this example all | |
239 # lie within [-0.1, 1] | |
240 ax1.set_xlim([-1, 1]) | |
241 # The (n_clusters+1)*10 is for inserting blank space between silhouette | |
242 # plots of individual clusters, to demarcate them clearly. | |
243 ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | |
244 | |
245 # Compute the silhouette scores for each sample | |
246 sample_silhouette_values = silhouette_samples(dataset, labels) | |
247 | |
248 y_lower = 10 | |
249 for i in range(n_clusters): | |
250 # Aggregate the silhouette scores for samples belonging to | |
251 # cluster i, and sort them | |
252 ith_cluster_silhouette_values = \ | |
253 sample_silhouette_values[labels == i] | |
254 | |
255 ith_cluster_silhouette_values.sort() | |
256 | |
257 size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
258 y_upper = y_lower + size_cluster_i | |
259 | |
260 color = cm.nipy_spectral(float(i) / n_clusters) | |
261 ax1.fill_betweenx(np.arange(y_lower, y_upper), | |
262 0, ith_cluster_silhouette_values, | |
263 facecolor=color, edgecolor=color, alpha=0.7) | |
264 | |
265 # Label the silhouette plots with their cluster numbers at the middle | |
266 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | |
267 | |
268 # Compute the new y_lower for next plot | |
269 y_lower = y_upper + 10 # 10 for the 0 samples | |
270 | |
271 ax1.set_title("The silhouette plot for the various clusters.") | |
272 ax1.set_xlabel("The silhouette coefficient values") | |
273 ax1.set_ylabel("Cluster label") | |
274 | |
275 # The vertical line for average silhouette score of all the values | |
276 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | |
277 | |
278 ax1.set_yticks([]) # Clear the yaxis labels / ticks | |
279 ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | |
280 | |
281 | |
282 plt.suptitle(("Silhouette analysis for clustering on sample data " | |
283 "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | |
284 | |
285 | |
286 plt.savefig(path, bbox_inches='tight') | |
287 | |
288 ######################## dbscan ############################################## | |
289 | |
290 def dbscan(dataset, eps, min_samples): | |
291 if not os.path.exists('clustering/dbscan_output'): | |
292 os.makedirs('clustering/dbscan_output') | |
293 | |
294 if eps is not None: | |
295 clusterer = DBSCAN(eps = eps, min_samples = min_samples) | |
296 else: | |
297 clusterer = DBSCAN() | |
298 | |
299 clustering = clusterer.fit(dataset) | |
300 | |
301 core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | |
302 core_samples_mask[clustering.core_sample_indices_] = True | |
303 labels = clustering.labels_ | |
304 | |
305 # Number of clusters in labels, ignoring noise if present. | |
306 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
307 | |
308 silhouette_avg = silhouette_score(dataset, labels) | |
309 warning("For n_clusters =" + str(n_clusters_) + | |
310 "The average silhouette_score is :" + str(silhouette_avg)) | |
311 | |
312 ##TODO: PLOT SU DBSCAN (no centers) e HIERARCHICAL | |
313 | |
314 # Black removed and is used for noise instead. | |
315 unique_labels = set(labels) | |
316 colors = [plt.cm.Spectral(each) | |
317 for each in np.linspace(0, 1, len(unique_labels))] | |
318 for k, col in zip(unique_labels, colors): | |
319 if k == -1: | |
320 # Black used for noise. | |
321 col = [0, 0, 0, 1] | |
322 | |
323 class_member_mask = (labels == k) | |
324 | |
325 xy = dataset[class_member_mask & core_samples_mask] | |
326 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), | |
327 markeredgecolor='k', markersize=14) | |
328 | |
329 xy = dataset[class_member_mask & ~core_samples_mask] | |
330 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), | |
331 markeredgecolor='k', markersize=6) | |
332 | |
333 plt.title('Estimated number of clusters: %d' % n_clusters_) | |
334 s = 'clustering/dbscan_output/dbscan_plot.png' | |
335 fig = plt.gcf() | |
336 fig.set_size_inches(18.5, 10.5, forward = True) | |
337 fig.savefig(s, dpi=100) | |
338 | |
339 | |
340 write_to_csv(dataset, labels, 'clustering/dbscan_output/dbscan_results.tsv') | |
341 | |
342 ########################## hierachical ####################################### | |
343 | |
344 def hierachical_agglomerative(dataset, k_min, k_max): | |
345 | |
346 if not os.path.exists('clustering/agglomerative_output'): | |
347 os.makedirs('clustering/agglomerative_output') | |
348 | |
349 plt.figure(figsize=(10, 7)) | |
350 plt.title("Customer Dendograms") | |
351 shc.dendrogram(shc.linkage(dataset, method='ward')) | |
352 fig = plt.gcf() | |
353 fig.savefig('clustering/agglomerative_output/dendogram.png', dpi=200) | |
354 | |
355 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
356 | |
357 for n_clusters in range_n_clusters: | |
358 | |
359 cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | |
360 cluster.fit_predict(dataset) | |
361 cluster_labels = cluster.labels_ | |
362 | |
363 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
364 warning("For n_clusters =", n_clusters, | |
365 "The average silhouette_score is :", silhouette_avg) | |
366 | |
367 plt.clf() | |
368 plt.figure(figsize=(10, 7)) | |
369 plt.title("Agglomerative Hierarchical Clustering\nwith " + str(n_clusters) + " clusters and " + str(silhouette_avg) + " silhouette score") | |
370 plt.scatter(dataset[:,0], dataset[:,1], c = cluster_labels, cmap='rainbow') | |
371 s = 'clustering/agglomerative_output/hierachical_' + str(n_clusters) + '_clusters.png' | |
372 fig = plt.gcf() | |
373 fig.set_size_inches(10, 7, forward = True) | |
374 fig.savefig(s, dpi=200) | |
375 | |
376 write_to_csv(dataset, cluster_labels, 'clustering/agglomerative_output/agglomerative_hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | |
377 | |
378 | |
379 | |
380 | |
381 ############################# main ########################################### | |
382 | |
383 | |
384 def main(): | |
385 if not os.path.exists('clustering'): | |
386 os.makedirs('clustering') | |
387 | |
388 args = process_args(sys.argv) | |
389 | |
390 #Data read | |
391 | |
392 X = read_dataset(args.input) | |
393 X = pd.DataFrame.to_dict(X, orient='list') | |
394 X = rewrite_input(X) | |
395 X = pd.DataFrame.from_dict(X, orient = 'index') | |
396 | |
397 for i in X.columns: | |
398 tmp = X[i][0] | |
399 if tmp == None: | |
400 X = X.drop(columns=[i]) | |
401 | |
402 X = pd.DataFrame.to_numpy(X) | |
403 | |
404 | |
405 if args.cluster_type == 'kmeans': | |
406 kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.davies) | |
407 | |
408 if args.cluster_type == 'dbscan': | |
409 dbscan(X, args.eps, args.min_samples) | |
410 | |
411 if args.cluster_type == 'hierarchy': | |
412 hierachical_agglomerative(X, args.k_min, args.k_max) | |
413 | |
414 ############################################################################## | |
415 | |
416 if __name__ == "__main__": | |
417 main() |