Mercurial > repos > bimib > marea
diff Marea/marea_cluster.py @ 0:23ac9cf12788 draft
Uploaded
author | bimib |
---|---|
date | Tue, 06 Nov 2018 03:16:21 -0500 |
parents | |
children | 5721182715a7 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Marea/marea_cluster.py Tue Nov 06 03:16:21 2018 -0500 @@ -0,0 +1,608 @@ + +from __future__ import division +import os +import sys +import pandas as pd +import collections +import pickle as pk +import argparse +from sklearn.cluster import KMeans +import matplotlib.pyplot as plt + +########################## argparse ########################################### + +def process_args(args): + parser = argparse.ArgumentParser(usage = '%(prog)s [options]', + description = 'process some value\'s' + + ' genes to create class.') + parser.add_argument('-rs', '--rules_selector', + type = str, + default = 'HMRcore', + choices = ['HMRcore', 'Recon', 'Custom'], + help = 'chose which type of dataset you want use') + parser.add_argument('-cr', '--custom', + type = str, + help='your dataset if you want custom rules') + parser.add_argument('-ch', '--cond_hier', + type = str, + default = 'no', + choices = ['no', 'yes'], + help = 'chose if you wanna hierical dendrogram') + parser.add_argument('-lk', '--k_min', + type = int, + help = 'min number of cluster') + parser.add_argument('-uk', '--k_max', + type = int, + help = 'max number of cluster') + parser.add_argument('-li', '--linkage', + type = str, + choices = ['single', 'complete', 'average'], + help='linkage hierarchical cluster') + parser.add_argument('-d', '--data', + type = str, + required = True, + help = 'input dataset') + parser.add_argument('-n', '--none', + type = str, + default = 'true', + choices = ['true', 'false'], + help = 'compute Nan values') + parser.add_argument('-td', '--tool_dir', + type = str, + required = True, + help = 'your tool directory') + parser.add_argument('-na', '--name', + type = str, + help = 'name of dataset') + parser.add_argument('-de', '--dendro', + help = "Dendrogram out") + parser.add_argument('-ol', '--out_log', + help = "Output log") + parser.add_argument('-el', '--elbow', + help = "Out elbow") + args = parser.parse_args() + return args + +########################### warning ########################################### + +def warning(s): + args = process_args(sys.argv) + with open(args.out_log, 'a') as log: + log.write(s) + +############################ dataset input #################################### + +def read_dataset(data, name): + try: + dataset = pd.read_csv(data, sep = '\t', header = 0) + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of '+name+'\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of '+name+'\n') + return dataset + +############################ dataset name ##################################### + +def name_dataset(name_data, count): + if str(name_data) == 'Dataset': + return str(name_data) + '_' + str(count) + else: + return str(name_data) + +############################ load id e rules ################################## + +def load_id_rules(reactions): + ids, rules = [], [] + for key, value in reactions.items(): + ids.append(key) + rules.append(value) + return (ids, rules) + +############################ check_methods #################################### + +def gene_type(l, name): + if check_hgnc(l): + return 'hugo_id' + elif check_ensembl(l): + return 'ensembl_gene_id' + elif check_symbol(l): + return 'symbol' + elif check_entrez(l): + return 'entrez_id' + else: + sys.exit('Execution aborted:\n' + + 'gene ID type in ' + name + ' not supported. Supported ID' + + 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') + +def check_hgnc(l): + if len(l) > 5: + if (l.upper()).startswith('HGNC:'): + return l[5:].isdigit() + else: + return False + else: + return False + +def check_ensembl(l): + if len(l) == 15: + if (l.upper()).startswith('ENS'): + return l[4:].isdigit() + else: + return False + else: + return False + +def check_symbol(l): + if len(l) > 0: + if l[0].isalpha() and l[1:].isalnum(): + return True + else: + return False + else: + return False + +def check_entrez(l): + if len(l) > 0: + return l.isdigit() + else: + return False + +def check_bool(b): + if b == 'true': + return True + elif b == 'false': + return False + +############################ make recon ####################################### + +def check_and_doWord(l): + tmp = [] + tmp_genes = [] + count = 0 + while l: + if count >= 0: + if l[0] == '(': + count += 1 + tmp.append(l[0]) + l.pop(0) + elif l[0] == ')': + count -= 1 + tmp.append(l[0]) + l.pop(0) + elif l[0] == ' ': + l.pop(0) + else: + word = [] + while l: + if l[0] in [' ', '(', ')']: + break + else: + word.append(l[0]) + l.pop(0) + word = ''.join(word) + tmp.append(word) + if not(word in ['or', 'and']): + tmp_genes.append(word) + else: + return False + if count == 0: + return (tmp, tmp_genes) + else: + return False + +def brackets_to_list(l): + tmp = [] + while l: + if l[0] == '(': + l.pop(0) + tmp.append(resolve_brackets(l)) + else: + tmp.append(l[0]) + l.pop(0) + return tmp + +def resolve_brackets(l): + tmp = [] + while l[0] != ')': + if l[0] == '(': + l.pop(0) + tmp.append(resolve_brackets(l)) + else: + tmp.append(l[0]) + l.pop(0) + l.pop(0) + return tmp + +def priorityAND(l): + tmp = [] + flag = True + while l: + if len(l) == 1: + if isinstance(l[0], list): + tmp.append(priorityAND(l[0])) + else: + tmp.append(l[0]) + l = l[1:] + elif l[0] == 'or': + tmp.append(l[0]) + flag = False + l = l[1:] + elif l[1] == 'or': + if isinstance(l[0], list): + tmp.append(priorityAND(l[0])) + else: + tmp.append(l[0]) + tmp.append(l[1]) + flag = False + l = l[2:] + elif l[1] == 'and': + tmpAnd = [] + if isinstance(l[0], list): + tmpAnd.append(priorityAND(l[0])) + else: + tmpAnd.append(l[0]) + tmpAnd.append(l[1]) + if isinstance(l[2], list): + tmpAnd.append(priorityAND(l[2])) + else: + tmpAnd.append(l[2]) + l = l[3:] + while l: + if l[0] == 'and': + tmpAnd.append(l[0]) + if isinstance(l[1], list): + tmpAnd.append(priorityAND(l[1])) + else: + tmpAnd.append(l[1]) + l = l[2:] + elif l[0] == 'or': + flag = False + break + if flag == True: #se ci sono solo AND nella lista + tmp.extend(tmpAnd) + elif flag == False: + tmp.append(tmpAnd) + return tmp + +def checkRule(l): + if len(l) == 1: + if isinstance(l[0], list): + if checkRule(l[0]) is False: + return False + elif len(l) > 2: + if checkRule2(l) is False: + return False + else: + return False + return True + +def checkRule2(l): + while l: + if len(l) == 1: + return False + elif isinstance(l[0], list) and l[1] in ['and', 'or']: + if checkRule(l[0]) is False: + return False + if isinstance(l[2], list): + if checkRule(l[2]) is False: + return False + l = l[3:] + elif l[1] in ['and', 'or']: + if isinstance(l[2], list): + if checkRule(l[2]) is False: + return False + l = l[3:] + elif l[0] in ['and', 'or']: + if isinstance(l[1], list): + if checkRule(l[1]) is False: + return False + l = l[2:] + else: + return False + return True + +def do_rules(rules): + split_rules = [] + err_rules = [] + tmp_gene_in_rule = [] + for i in range(len(rules)): + tmp = list(rules[i]) + if tmp: + tmp, tmp_genes = check_and_doWord(tmp) + tmp_gene_in_rule.extend(tmp_genes) + if tmp is False: + split_rules.append([]) + err_rules.append(rules[i]) + else: + tmp = brackets_to_list(tmp) + if checkRule(tmp): + split_rules.append(priorityAND(tmp)) + else: + split_rules.append([]) + err_rules.append(rules[i]) + else: + split_rules.append([]) + if err_rules: + warning('Warning: wrong format rule in ' + str(err_rules) + '\n') + return (split_rules, list(set(tmp_gene_in_rule))) + +def make_recon(data): + try: + import cobra as cb + import warnings + with warnings.catch_warnings(): + warnings.simplefilter('ignore') + recon = cb.io.read_sbml_model(data) + react = recon.reactions + rules = [react[i].gene_reaction_rule for i in range(len(react))] + ids = [react[i].id for i in range(len(react))] + except cb.io.sbml3.CobraSBMLError: + try: + data = (pd.read_csv(data, sep = '\t', dtype = str)).fillna('') + if len(data.columns) < 2: + sys.exit('Execution aborted: wrong format of ' + + 'custom GPR rules\n') + if not len(data.columns) == 2: + warning('WARNING: more than 2 columns in custom GPR rules.\n' + + 'Extra columns have been disregarded\n') + ids = list(data.iloc[:, 0]) + rules = list(data.iloc[:, 1]) + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of custom GPR rules\n') + except pd.errors.ParserError: + sys.exit('Execution aborted: wrong format of custom GPR rules\n') + split_rules, tmp_genes = do_rules(rules) + gene_in_rule = {} + for i in tmp_genes: + gene_in_rule[i] = 'ok' + return (ids, split_rules, gene_in_rule) + +############################ resolve_methods ################################## + +def replace_gene_value(l, d): + tmp = [] + err = [] + while l: + if isinstance(l[0], list): + tmp_rules, tmp_err = replace_gene_value(l[0], d) + tmp.append(tmp_rules) + err.extend(tmp_err) + else: + value = replace_gene(l[0],d) + tmp.append(value) + if value == None: + err.append(l[0]) + l = l[1:] + return (tmp, err) + +def replace_gene(l, d): + if l =='and' or l == 'or': + return l + else: + value = d.get(l, None) + if not(value == None or isinstance(value, (int, float))): + sys.exit('Execution aborted: ' + value + ' value not valid\n') + return value + +def compute(val1, op, val2, cn): + if val1 != None and val2 != None: + if op == 'and': + return min(val1, val2) + else: + return val1 + val2 + elif op == 'and': + if cn is True: + if val1 != None: + return val1 + elif val2 != None: + return val2 + else: + return None + else: + return None + else: + if val1 != None: + return val1 + elif val2 != None: + return val2 + else: + return None + +def control(ris, l, cn): + if len(l) == 1: + if isinstance(l[0], (float, int)) or l[0] == None: + return l[0] + elif isinstance(l[0], list): + return control(None, l[0], cn) + else: + return False + elif len(l) > 2: + return control_list(ris, l, cn) + else: + return False + +def control_list(ris, l, cn): + while l: + if len(l) == 1: + return False + elif (isinstance(l[0], (float, int)) or + l[0] == None) and l[1] in ['and', 'or']: + if isinstance(l[2], (float, int)) or l[2] == None: + ris = compute(l[0], l[1], l[2], cn) + elif isinstance(l[2], list): + tmp = control(None, l[2], cn) + if tmp is False: + return False + else: + ris = compute(l[0], l[1], tmp, cn) + else: + return False + l = l[3:] + elif l[0] in ['and', 'or']: + if isinstance(l[1], (float, int)) or l[1] == None: + ris = compute(ris, l[0], l[1], cn) + elif isinstance(l[1], list): + tmp = control(None,l[1], cn) + if tmp is False: + return False + else: + ris = compute(ris, l[0], tmp, cn) + else: + return False + l = l[2:] + elif isinstance(l[0], list) and l[1] in ['and', 'or']: + if isinstance(l[2], (float, int)) or l[2] == None: + tmp = control(None, l[0], cn) + if tmp is False: + return False + else: + ris = compute(tmp, l[1], l[2], cn) + elif isinstance(l[2], list): + tmp = control(None, l[0], cn) + tmp2 = control(None, l[2], cn) + if tmp is False or tmp2 is False: + return False + else: + ris = compute(tmp, l[1], tmp2, cn) + else: + return False + l = l[3:] + else: + return False + return ris + +############################ gene ############################################# + +def data_gene(gene, type_gene, name, gene_custom): + args = process_args(sys.argv) + for i in range(len(gene)): + tmp = gene.iloc[i, 0] + if tmp.startswith(' ') or tmp.endswith(' '): + gene.iloc[i, 0] = (tmp.lstrip()).rstrip() + gene_dup = [item for item, count in + collections.Counter(gene[gene.columns[0]]).items() if count > 1] + pat_dup = [item for item, count in + collections.Counter(list(gene.columns)).items() if count > 1] + if gene_dup: + if gene_custom == None: + if args.rules_selector == 'HMRcore': + gene_in_rule = pk.load(open(args.tool_dir + + '/local/HMRcore_genes.p', 'rb')) + elif args.rules_selector == 'Recon': + gene_in_rule = pk.load(open(args.tool_dir + + '/local/Recon_genes.p', 'rb')) + gene_in_rule = gene_in_rule.get(type_gene) + else: + gene_in_rule = gene_custom + tmp = [] + for i in gene_dup: + if gene_in_rule.get(i) == 'ok': + tmp.append(i) + if tmp: + sys.exit('Execution aborted because gene ID ' + + str(tmp) + ' in ' + name + ' is duplicated\n') + if pat_dup: + sys.exit('Execution aborted: duplicated label\n' + + str(pat_dup) + 'in ' + name + '\n') + return (gene.set_index(gene.columns[0])).to_dict() + +############################ resolve ########################################## + +def resolve(genes, rules, ids, resolve_none, name): + resolve_rules = {} + not_found = [] + flag = False + for key, value in genes.items(): + tmp_resolve = [] + for i in range(len(rules)): + tmp = rules[i] + if tmp: + tmp, err = replace_gene_value(tmp, value) + if err: + not_found.extend(err) + ris = control(None, tmp, resolve_none) + if ris is False or ris == None: + tmp_resolve.append(None) + else: + tmp_resolve.append(ris) + flag = True + else: + tmp_resolve.append(None) + resolve_rules[key] = tmp_resolve + if flag is False: + sys.exit('Execution aborted: no computable score' + + ' (due to missing gene values) for class ' + + name + ', the class has been disregarded\n') + return (resolve_rules, list(set(not_found))) + +################################# clustering ################################## + +def f_cluster(resolve_rules): + os.makedirs('cluster_out') + args = process_args(sys.argv) + cluster_data = pd.DataFrame.from_dict(resolve_rules, orient = 'index') + for i in cluster_data.columns: + tmp = cluster_data[i][0] + if tmp == None: + cluster_data = cluster_data.drop(columns=[i]) + distorsion = [] + for i in range(args.k_min, args.k_max+1): + tmp_kmeans = KMeans(n_clusters = i, + n_init = 100, + max_iter = 300, + random_state = 0).fit(cluster_data) + distorsion.append(tmp_kmeans.inertia_) + predict = tmp_kmeans.predict(cluster_data) + predict = [x+1 for x in predict] + classe = (pd.DataFrame(zip(cluster_data.index, predict))).astype(str) + dest = 'cluster_out/K=' + str(i) + '_' + args.name+'.tsv' + classe.to_csv(dest, sep = '\t', index = False, + header = ['Patient_ID', 'Class']) + plt.figure(0) + plt.plot(range(args.k_min, args.k_max+1), distorsion, marker = 'o') + plt.xlabel('Number of cluster') + plt.ylabel('Distorsion') + plt.savefig(args.elbow, dpi = 240, format = 'pdf') + if args.cond_hier == 'yes': + import scipy.cluster.hierarchy as hier + lin = hier.linkage(cluster_data, args.linkage) + plt.figure(1) + plt.figure(figsize=(10, 5)) + hier.dendrogram(lin, leaf_font_size = 2, labels = cluster_data.index) + plt.savefig(args.dendro, dpi = 480, format = 'pdf') + return None + +################################# main ######################################## + +def main(): + args = process_args(sys.argv) + if args.k_min > args.k_max: + sys.exit('Execution aborted: max cluster > min cluster') + if args.rules_selector == 'HMRcore': + recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) + elif args.rules_selector == 'Recon': + recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) + elif args.rules_selector == 'Custom': + ids, rules, gene_in_rule = make_recon(args.custom) + resolve_none = check_bool(args.none) + dataset = read_dataset(args.data, args.name) + dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) + type_gene = gene_type(dataset.iloc[0, 0], args.name) + if args.rules_selector != 'Custom': + genes = data_gene(dataset, type_gene, args.name, None) + ids, rules = load_id_rules(recon.get(type_gene)) + elif args.rules_selector == 'Custom': + genes = data_gene(dataset, type_gene, args.name, gene_in_rule) + resolve_rules, err = resolve(genes, rules, ids, resolve_none, args.name) + if err: + warning('WARNING: gene\n' + str(err) + '\nnot found in class ' + + args.name + ', the expression level for this gene ' + + 'will be considered NaN\n') + f_cluster(resolve_rules) + warning('Execution succeeded') + return None + +############################################################################### + +if __name__ == "__main__": + main() \ No newline at end of file