# HG changeset patch # User bimib # Date 1571156476 14400 # Node ID e88efefbd015de3356cd9f0a85f80bd7775021d1 # Parent 9fcb0e8d6d47e63ec4adce79de8c12f767b884cd fix changes diff -r 9fcb0e8d6d47 -r e88efefbd015 Desktop/Marea/marea.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Desktop/Marea/marea.py Tue Oct 15 12:21:16 2019 -0400 @@ -0,0 +1,861 @@ +from __future__ import division +import sys +import pandas as pd +import itertools as it +import scipy.stats as st +import collections +import lxml.etree as ET +import shutil +import pickle as pk +import math +import os +import argparse +from svglib.svglib import svg2rlg +from reportlab.graphics import renderPDF + +########################## argparse ########################################## + +def process_args(args): + parser = argparse.ArgumentParser(usage = '%(prog)s [options]', + description = 'process some value\'s'+ + ' genes to create a comparison\'s map.') + parser.add_argument('-rs', '--rules_selector', + type = str, + default = 'HMRcore', + choices = ['HMRcore', 'Recon', 'Custom'], + help = 'chose which type of dataset you want use') + parser.add_argument('-cr', '--custom', + type = str, + help='your dataset if you want custom rules') + parser.add_argument('-na', '--names', + type = str, + nargs = '+', + help = 'input names') + parser.add_argument('-n', '--none', + type = str, + default = 'true', + choices = ['true', 'false'], + help = 'compute Nan values') + parser.add_argument('-pv' ,'--pValue', + type = float, + default = 0.05, + help = 'P-Value threshold (default: %(default)s)') + parser.add_argument('-fc', '--fChange', + type = float, + default = 1.5, + help = 'Fold-Change threshold (default: %(default)s)') + parser.add_argument('-td', '--tool_dir', + type = str, + required = True, + help = 'your tool directory') + parser.add_argument('-op', '--option', + type = str, + choices = ['datasets', 'dataset_class', 'datasets_rasonly'], + help='dataset or dataset and class') + parser.add_argument('-ol', '--out_log', + help = "Output log") + parser.add_argument('-ids', '--input_datas', + type = str, + nargs = '+', + help = 'input datasets') + parser.add_argument('-id', '--input_data', + type = str, + help = 'input dataset') + parser.add_argument('-ic', '--input_class', + type = str, + help = 'sample group specification') + parser.add_argument('-cm', '--custom_map', + type = str, + help = 'custom map') + parser.add_argument('-yn', '--yes_no', + type = str, + choices = ['yes', 'no'], + help = 'if make or not custom map') + parser.add_argument('-gs', '--generate_svg', + type = str, + default = 'true', + choices = ['true', 'false'], + help = 'generate svg map') + parser.add_argument('-gp', '--generate_pdf', + type = str, + default = 'true', + choices = ['true', 'false'], + help = 'generate pdf map') + parser.add_argument('-gr', '--generate_ras', + type = str, + default = 'true', + choices = ['true', 'false'], + help = 'generate reaction activity score') + parser.add_argument('-sr', '--single_ras_file', + type = str, + help = 'file that will contain ras') + + args = parser.parse_args() + return args + +########################### warning ########################################### + +def warning(s): + args = process_args(sys.argv) + with open(args.out_log, 'a') as log: + log.write(s) + +############################ dataset input #################################### + +def read_dataset(data, name): + try: + dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + return dataset + +############################ dataset name ##################################### + +def name_dataset(name_data, count): + if str(name_data) == 'Dataset': + return str(name_data) + '_' + str(count) + else: + return str(name_data) + +############################ load id e rules ################################## + +def load_id_rules(reactions): + ids, rules = [], [] + for key, value in reactions.items(): + ids.append(key) + rules.append(value) + return (ids, rules) + +############################ check_methods #################################### + +def gene_type(l, name): + if check_hgnc(l): + return 'hugo_id' + elif check_ensembl(l): + return 'ensembl_gene_id' + elif check_symbol(l): + return 'symbol' + elif check_entrez(l): + return 'entrez_id' + else: + sys.exit('Execution aborted:\n' + + 'gene ID type in ' + name + ' not supported. Supported ID'+ + 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') + +def check_hgnc(l): + if len(l) > 5: + if (l.upper()).startswith('HGNC:'): + return l[5:].isdigit() + else: + return False + else: + return False + +def check_ensembl(l): + if len(l) == 15: + if (l.upper()).startswith('ENS'): + return l[4:].isdigit() + else: + return False + else: + return False + +def check_symbol(l): + if len(l) > 0: + if l[0].isalpha() and l[1:].isalnum(): + return True + else: + return False + else: + return False + +def check_entrez(l): + if len(l) > 0: + return l.isdigit() + else: + return False + +def check_bool(b): + if b == 'true': + return True + elif b == 'false': + return False + +############################ resolve_methods ################################## + +def replace_gene_value(l, d): + tmp = [] + err = [] + while l: + if isinstance(l[0], list): + tmp_rules, tmp_err = replace_gene_value(l[0], d) + tmp.append(tmp_rules) + err.extend(tmp_err) + else: + value = replace_gene(l[0], d) + tmp.append(value) + if value == None: + err.append(l[0]) + l = l[1:] + return (tmp, err) + +def replace_gene(l, d): + if l =='and' or l == 'or': + return l + else: + value = d.get(l, None) + if not(value == None or isinstance(value, (int, float))): + sys.exit('Execution aborted: ' + value + ' value not valid\n') + return value + +def computes(val1, op, val2, cn): + if val1 != None and val2 != None: + if op == 'and': + return min(val1, val2) + else: + return val1 + val2 + elif op == 'and': + if cn is True: + if val1 != None: + return val1 + elif val2 != None: + return val2 + else: + return None + else: + return None + else: + if val1 != None: + return val1 + elif val2 != None: + return val2 + else: + return None + +def control(ris, l, cn): + if len(l) == 1: + if isinstance(l[0], (float, int)) or l[0] == None: + return l[0] + elif isinstance(l[0], list): + return control(None, l[0], cn) + else: + return False + elif len(l) > 2: + return control_list(ris, l, cn) + else: + return False + +def control_list(ris, l, cn): + while l: + if len(l) == 1: + return False + elif (isinstance(l[0], (float, int)) or + l[0] == None) and l[1] in ['and', 'or']: + if isinstance(l[2], (float, int)) or l[2] == None: + ris = computes(l[0], l[1], l[2], cn) + elif isinstance(l[2], list): + tmp = control(None, l[2], cn) + if tmp is False: + return False + else: + ris = computes(l[0], l[1], tmp, cn) + else: + return False + l = l[3:] + elif l[0] in ['and', 'or']: + if isinstance(l[1], (float, int)) or l[1] == None: + ris = computes(ris, l[0], l[1], cn) + elif isinstance(l[1], list): + tmp = control(None,l[1], cn) + if tmp is False: + return False + else: + ris = computes(ris, l[0], tmp, cn) + else: + return False + l = l[2:] + elif isinstance(l[0], list) and l[1] in ['and', 'or']: + if isinstance(l[2], (float, int)) or l[2] == None: + tmp = control(None, l[0], cn) + if tmp is False: + return False + else: + ris = computes(tmp, l[1], l[2], cn) + elif isinstance(l[2], list): + tmp = control(None, l[0], cn) + tmp2 = control(None, l[2], cn) + if tmp is False or tmp2 is False: + return False + else: + ris = computes(tmp, l[1], tmp2, cn) + else: + return False + l = l[3:] + else: + return False + return ris + +############################ map_methods ###################################### + +def fold_change(avg1, avg2): + if avg1 == 0 and avg2 == 0: + return 0 + elif avg1 == 0: + return '-INF' + elif avg2 == 0: + return 'INF' + else: + return math.log(avg1 / avg2, 2) + +def fix_style(l, col, width, dash): + tmp = l.split(';') + flag_col = False + flag_width = False + flag_dash = False + for i in range(len(tmp)): + if tmp[i].startswith('stroke:'): + tmp[i] = 'stroke:' + col + flag_col = True + if tmp[i].startswith('stroke-width:'): + tmp[i] = 'stroke-width:' + width + flag_width = True + if tmp[i].startswith('stroke-dasharray:'): + tmp[i] = 'stroke-dasharray:' + dash + flag_dash = True + if not flag_col: + tmp.append('stroke:' + col) + if not flag_width: + tmp.append('stroke-width:' + width) + if not flag_dash: + tmp.append('stroke-dasharray:' + dash) + return ';'.join(tmp) + +def fix_map(d, core_map, threshold_P_V, threshold_F_C, max_F_C): + maxT = 12 + minT = 2 + grey = '#BEBEBE' + blue = '#0000FF' + red = '#E41A1C' + for el in core_map.iter(): + el_id = str(el.get('id')) + if el_id.startswith('R_'): + tmp = d.get(el_id[2:]) + if tmp != None: + p_val = tmp[0] + f_c = tmp[1] + if p_val < threshold_P_V: + if not isinstance(f_c, str): + if abs(f_c) < math.log(threshold_F_C, 2): + col = grey + width = str(minT) + else: + if f_c < 0: + col = blue + elif f_c > 0: + col = red + width = str(max((abs(f_c) * maxT) / max_F_C, minT)) + else: + if f_c == '-INF': + col = blue + elif f_c == 'INF': + col = red + width = str(maxT) + dash = 'none' + else: + dash = '5,5' + col = grey + width = str(minT) + el.set('style', fix_style(el.get('style'), col, width, dash)) + return core_map + +############################ make recon ####################################### + +def check_and_doWord(l): + tmp = [] + tmp_genes = [] + count = 0 + while l: + if count >= 0: + if l[0] == '(': + count += 1 + tmp.append(l[0]) + l.pop(0) + elif l[0] == ')': + count -= 1 + tmp.append(l[0]) + l.pop(0) + elif l[0] == ' ': + l.pop(0) + else: + word = [] + while l: + if l[0] in [' ', '(', ')']: + break + else: + word.append(l[0]) + l.pop(0) + word = ''.join(word) + tmp.append(word) + if not(word in ['or', 'and']): + tmp_genes.append(word) + else: + return False + if count == 0: + return (tmp, tmp_genes) + else: + return False + +def brackets_to_list(l): + tmp = [] + while l: + if l[0] == '(': + l.pop(0) + tmp.append(resolve_brackets(l)) + else: + tmp.append(l[0]) + l.pop(0) + return tmp + +def resolve_brackets(l): + tmp = [] + while l[0] != ')': + if l[0] == '(': + l.pop(0) + tmp.append(resolve_brackets(l)) + else: + tmp.append(l[0]) + l.pop(0) + l.pop(0) + return tmp + +def priorityAND(l): + tmp = [] + flag = True + while l: + if len(l) == 1: + if isinstance(l[0], list): + tmp.append(priorityAND(l[0])) + else: + tmp.append(l[0]) + l = l[1:] + elif l[0] == 'or': + tmp.append(l[0]) + flag = False + l = l[1:] + elif l[1] == 'or': + if isinstance(l[0], list): + tmp.append(priorityAND(l[0])) + else: + tmp.append(l[0]) + tmp.append(l[1]) + flag = False + l = l[2:] + elif l[1] == 'and': + tmpAnd = [] + if isinstance(l[0], list): + tmpAnd.append(priorityAND(l[0])) + else: + tmpAnd.append(l[0]) + tmpAnd.append(l[1]) + if isinstance(l[2], list): + tmpAnd.append(priorityAND(l[2])) + else: + tmpAnd.append(l[2]) + l = l[3:] + while l: + if l[0] == 'and': + tmpAnd.append(l[0]) + if isinstance(l[1], list): + tmpAnd.append(priorityAND(l[1])) + else: + tmpAnd.append(l[1]) + l = l[2:] + elif l[0] == 'or': + flag = False + break + if flag == True: #when there are only AND in list + tmp.extend(tmpAnd) + elif flag == False: + tmp.append(tmpAnd) + return tmp + +def checkRule(l): + if len(l) == 1: + if isinstance(l[0], list): + if checkRule(l[0]) is False: + return False + elif len(l) > 2: + if checkRule2(l) is False: + return False + else: + return False + return True + +def checkRule2(l): + while l: + if len(l) == 1: + return False + elif isinstance(l[0], list) and l[1] in ['and', 'or']: + if checkRule(l[0]) is False: + return False + if isinstance(l[2], list): + if checkRule(l[2]) is False: + return False + l = l[3:] + elif l[1] in ['and', 'or']: + if isinstance(l[2], list): + if checkRule(l[2]) is False: + return False + l = l[3:] + elif l[0] in ['and', 'or']: + if isinstance(l[1], list): + if checkRule(l[1]) is False: + return False + l = l[2:] + else: + return False + return True + +def do_rules(rules): + split_rules = [] + err_rules = [] + tmp_gene_in_rule = [] + for i in range(len(rules)): + tmp = list(rules[i]) + if tmp: + tmp, tmp_genes = check_and_doWord(tmp) + tmp_gene_in_rule.extend(tmp_genes) + if tmp is False: + split_rules.append([]) + err_rules.append(rules[i]) + else: + tmp = brackets_to_list(tmp) + if checkRule(tmp): + split_rules.append(priorityAND(tmp)) + else: + split_rules.append([]) + err_rules.append(rules[i]) + else: + split_rules.append([]) + if err_rules: + warning('Warning: wrong format rule in ' + str(err_rules) + '\n') + return (split_rules, list(set(tmp_gene_in_rule))) + +def make_recon(data): + try: + import cobra as cb + import warnings + with warnings.catch_warnings(): + warnings.simplefilter('ignore') + recon = cb.io.read_sbml_model(data) + react = recon.reactions + rules = [react[i].gene_reaction_rule for i in range(len(react))] + ids = [react[i].id for i in range(len(react))] + except cb.io.sbml3.CobraSBMLError: + try: + data = (pd.read_csv(data, sep = '\t', dtype = str, engine='python')).fillna('') + if len(data.columns) < 2: + sys.exit('Execution aborted: wrong format of '+ + 'custom datarules\n') + if not len(data.columns) == 2: + warning('Warning: more than 2 columns in custom datarules.\n' + + 'Extra columns have been disregarded\n') + ids = list(data.iloc[:, 0]) + rules = list(data.iloc[:, 1]) + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of custom datarules\n') + except pd.errors.ParserError: + sys.exit('Execution aborted: wrong format of custom datarules\n') + split_rules, tmp_genes = do_rules(rules) + gene_in_rule = {} + for i in tmp_genes: + gene_in_rule[i] = 'ok' + return (ids, split_rules, gene_in_rule) + +############################ gene ############################################# + +def data_gene(gene, type_gene, name, gene_custom): + args = process_args(sys.argv) + for i in range(len(gene)): + tmp = gene.iloc[i, 0] + if tmp.startswith(' ') or tmp.endswith(' '): + gene.iloc[i, 0] = (tmp.lstrip()).rstrip() + gene_dup = [item for item, count in + collections.Counter(gene[gene.columns[0]]).items() if count > 1] + pat_dup = [item for item, count in + collections.Counter(list(gene.columns)).items() if count > 1] + if gene_dup: + if gene_custom == None: + if args.rules_selector == 'HMRcore': + gene_in_rule = pk.load(open(args.tool_dir + + '/local/HMRcore_genes.p', 'rb')) + elif args.rules_selector == 'Recon': + gene_in_rule = pk.load(open(args.tool_dir + + '/local/Recon_genes.p', 'rb')) + gene_in_rule = gene_in_rule.get(type_gene) + else: + gene_in_rule = gene_custom + tmp = [] + for i in gene_dup: + if gene_in_rule.get(i) == 'ok': + tmp.append(i) + if tmp: + sys.exit('Execution aborted because gene ID ' + +str(tmp)+' in '+name+' is duplicated\n') + if pat_dup: + warning('Warning: duplicated label\n' + str(pat_dup) + 'in ' + name + + '\n') + return (gene.set_index(gene.columns[0])).to_dict() + +############################ resolve ########################################## + +def resolve(genes, rules, ids, resolve_none, name): + resolve_rules = {} + not_found = [] + flag = False + for key, value in genes.items(): + tmp_resolve = [] + for i in range(len(rules)): + tmp = rules[i] + if tmp: + tmp, err = replace_gene_value(tmp, value) + if err: + not_found.extend(err) + ris = control(None, tmp, resolve_none) + if ris is False or ris == None: + tmp_resolve.append(None) + else: + tmp_resolve.append(ris) + flag = True + else: + tmp_resolve.append(None) + resolve_rules[key] = tmp_resolve + if flag is False: + warning('Warning: no computable score (due to missing gene values)' + + 'for class ' + name + ', the class has been disregarded\n') + return (None, None) + return (resolve_rules, list(set(not_found))) + +############################ split class ###################################### + +def split_class(classes, resolve_rules): + class_pat = {} + for i in range(len(classes)): + classe = classes.iloc[i, 1] + if not pd.isnull(classe): + l = [] + for j in range(i, len(classes)): + if classes.iloc[j, 1] == classe: + pat_id = classes.iloc[j, 0] + tmp = resolve_rules.get(pat_id, None) + if tmp != None: + l.append(tmp) + classes.iloc[j, 1] = None + if l: + class_pat[classe] = list(map(list, zip(*l))) + else: + warning('Warning: no sample found in class ' + classe + + ', the class has been disregarded\n') + return class_pat + +############################ create_ras ####################################### + +def create_ras (resolve_rules, dataset_name, single_ras): + + if resolve_rules == None: + warning("Couldn't generate RAS for current dataset: " + dataset_name) + + for geni in resolve_rules.values(): + for i, valori in enumerate(geni): + if valori == None: + geni[i] = 'None' + + output_ras = pd.DataFrame.from_dict(resolve_rules) + output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) + + if (single_ras): + args = process_args(sys.argv) + text_file = open(args.single_ras_file, "w") + else: + text_file = open("ras/Reaction_Activity_Score_Of_" + dataset_name + ".tsv", "w") + + text_file.write(output_to_csv) + text_file.close() + +############################ map ############################################## + +def maps(core_map, class_pat, ids, threshold_P_V, threshold_F_C, create_svg, create_pdf): + args = process_args(sys.argv) + if (not class_pat) or (len(class_pat.keys()) < 2): + sys.exit('Execution aborted: classes provided for comparisons are ' + + 'less than two\n') + for i, j in it.combinations(class_pat.keys(), 2): + tmp = {} + count = 0 + max_F_C = 0 + for l1, l2 in zip(class_pat.get(i), class_pat.get(j)): + try: + stat_D, p_value = st.ks_2samp(l1, l2) + avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) + if not isinstance(avg, str): + if max_F_C < abs(avg): + max_F_C = abs(avg) + tmp[ids[count]] = [float(p_value), avg] + count += 1 + except (TypeError, ZeroDivisionError): + count += 1 + tab = 'result/' + i + '_vs_' + j + ' (Tabular Result).tsv' + tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") + tmp_csv = tmp_csv.reset_index() + header = ['ids', 'P_Value', 'Log2(fold change)'] + tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) + + if create_svg or create_pdf: + if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' + and args.yes_no == 'yes'): + fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) + file_svg = 'result/' + i + '_vs_' + j + ' (SVG Map).svg' + with open(file_svg, 'wb') as new_map: + new_map.write(ET.tostring(core_map)) + + + if create_pdf: + file_pdf = 'result/' + i + '_vs_' + j + ' (PDF Map).pdf' + renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) + + if not create_svg: + #Ho utilizzato il file svg per generare il pdf, + #ma l'utente non ne ha richiesto il ritorno, quindi + #lo elimino + os.remove('result/' + i + '_vs_' + j + ' (SVG Map).svg') + + return None + +############################ MAIN ############################################# + +def main(): + args = process_args(sys.argv) + + create_svg = check_bool(args.generate_svg) + create_pdf = check_bool(args.generate_pdf) + generate_ras = check_bool(args.generate_ras) + + os.makedirs('result') + + if generate_ras: + os.makedirs('ras') + + if args.rules_selector == 'HMRcore': + recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) + elif args.rules_selector == 'Recon': + recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) + elif args.rules_selector == 'Custom': + ids, rules, gene_in_rule = make_recon(args.custom) + + resolve_none = check_bool(args.none) + + class_pat = {} + + if args.option == 'datasets_rasonly': + name = "RAS Dataset" + dataset = read_dataset(args.input_datas[0],"dataset") + + dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) + + type_gene = gene_type(dataset.iloc[0, 0], name) + + if args.rules_selector != 'Custom': + genes = data_gene(dataset, type_gene, name, None) + ids, rules = load_id_rules(recon.get(type_gene)) + elif args.rules_selector == 'Custom': + genes = data_gene(dataset, type_gene, name, gene_in_rule) + + resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) + + create_ras(resolve_rules, name, True) + + if err != None and err: + warning('Warning: gene\n' + str(err) + '\nnot found in class ' + + name + ', the expression level for this gene ' + + 'will be considered NaN\n') + + print('execution succeded') + return None + + + elif args.option == 'datasets': + num = 1 + for i, j in zip(args.input_datas, args.names): + + name = name_dataset(j, num) + dataset = read_dataset(i, name) + + dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) + + type_gene = gene_type(dataset.iloc[0, 0], name) + + if args.rules_selector != 'Custom': + genes = data_gene(dataset, type_gene, name, None) + ids, rules = load_id_rules(recon.get(type_gene)) + elif args.rules_selector == 'Custom': + genes = data_gene(dataset, type_gene, name, gene_in_rule) + + resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) + + if generate_ras: + create_ras(resolve_rules, name, False) + + if err != None and err: + warning('Warning: gene\n' + str(err) + '\nnot found in class ' + + name + ', the expression level for this gene ' + + 'will be considered NaN\n') + if resolve_rules != None: + class_pat[name] = list(map(list, zip(*resolve_rules.values()))) + num += 1 + elif args.option == 'dataset_class': + name = 'RNAseq' + dataset = read_dataset(args.input_data, name) + dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) + type_gene = gene_type(dataset.iloc[0, 0], name) + classes = read_dataset(args.input_class, 'class') + if not len(classes.columns) == 2: + warning('Warning: more than 2 columns in class file. Extra' + + 'columns have been disregarded\n') + classes = classes.astype(str) + if args.rules_selector != 'Custom': + genes = data_gene(dataset, type_gene, name, None) + ids, rules = load_id_rules(recon.get(type_gene)) + elif args.rules_selector == 'Custom': + genes = data_gene(dataset, type_gene, name, gene_in_rule) + resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) + if err != None and err: + warning('Warning: gene\n'+str(err)+'\nnot found in class ' + + name + ', the expression level for this gene ' + + 'will be considered NaN\n') + if resolve_rules != None: + class_pat = split_class(classes, resolve_rules) + + + if args.rules_selector == 'Custom': + if args.yes_no == 'yes': + try: + core_map = ET.parse(args.custom_map) + except (ET.XMLSyntaxError, ET.XMLSchemaParseError): + sys.exit('Execution aborted: custom map in wrong format') + elif args.yes_no == 'no': + core_map = ET.parse(args.tool_dir + '/local/HMRcoreMap.svg') + else: + core_map = ET.parse(args.tool_dir+'/local/HMRcoreMap.svg') + + maps(core_map, class_pat, ids, args.pValue, args.fChange, create_svg, create_pdf) + + print('Execution succeded') + + return None + +############################################################################### + +if __name__ == "__main__": + main() diff -r 9fcb0e8d6d47 -r e88efefbd015 Desktop/Marea/marea.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Desktop/Marea/marea.xml Tue Oct 15 12:21:16 2019 -0400 @@ -0,0 +1,274 @@ + + + + marea_macros.xml + + + pandas + scipy + cobra + lxml + svglib + reportlab + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + cond['type_selector'] == "datasets_rasonly" + + + cond['type_selector'] == "datasets" or cond['type_selector'] == "dataset_class" + + + + cond['type_selector'] != "datasets_rasonly" and cond['advanced']['choice'] and cond['advanced']['generateRas'] + + + + + + + + + + + + + + + + diff -r 9fcb0e8d6d47 -r e88efefbd015 Desktop/Marea/marea_cluster.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Desktop/Marea/marea_cluster.py Tue Oct 15 12:21:16 2019 -0400 @@ -0,0 +1,401 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Jun 3 19:51:00 2019 +@author: Narger +""" + +import sys +import argparse +import os +from sklearn.datasets import make_blobs +from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering +from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score, cluster +import matplotlib +matplotlib.use('agg') +import matplotlib.pyplot as plt +import scipy.cluster.hierarchy as shc +import matplotlib.cm as cm +import numpy as np +import pandas as pd + +################################# process args ############################### + +def process_args(args): + parser = argparse.ArgumentParser(usage = '%(prog)s [options]', + description = 'process some value\'s' + + ' genes to create class.') + + parser.add_argument('-ol', '--out_log', + help = "Output log") + + parser.add_argument('-in', '--input', + type = str, + help = 'input dataset') + + parser.add_argument('-cy', '--cluster_type', + type = str, + choices = ['kmeans', 'meanshift', 'dbscan', 'hierarchy'], + default = 'kmeans', + help = 'choose clustering algorythm') + + parser.add_argument('-k1', '--k_min', + type = int, + default = 2, + help = 'choose minimun cluster number to be generated') + + parser.add_argument('-k2', '--k_max', + type = int, + default = 7, + help = 'choose maximum cluster number to be generated') + + parser.add_argument('-el', '--elbow', + type = str, + default = 'false', + choices = ['true', 'false'], + help = 'choose if you want to generate an elbow plot for kmeans') + + parser.add_argument('-si', '--silhouette', + type = str, + default = 'false', + choices = ['true', 'false'], + help = 'choose if you want silhouette plots') + + parser.add_argument('-db', '--davies', + type = str, + default = 'false', + choices = ['true', 'false'], + help = 'choose if you want davies bouldin scores') + + parser.add_argument('-td', '--tool_dir', + type = str, + required = True, + help = 'your tool directory') + + parser.add_argument('-ms', '--min_samples', + type = int, + help = 'min samples for dbscan (optional)') + + parser.add_argument('-ep', '--eps', + type = int, + help = 'eps for dbscan (optional)') + + parser.add_argument('-bc', '--best_cluster', + type = str, + help = 'output of best cluster tsv') + + + + args = parser.parse_args() + return args + +########################### warning ########################################### + +def warning(s): + args = process_args(sys.argv) + with open(args.out_log, 'a') as log: + log.write(s + "\n\n") + print(s) + +########################## read dataset ###################################### + +def read_dataset(dataset): + try: + dataset = pd.read_csv(dataset, sep = '\t', header = 0) + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of dataset\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of dataset\n') + return dataset + +############################ rewrite_input ################################### + +def rewrite_input(dataset): + #Riscrivo il dataset come dizionario di liste, + #non come dizionario di dizionari + + for key, val in dataset.items(): + l = [] + for i in val: + if i == 'None': + l.append(None) + else: + l.append(float(i)) + + dataset[key] = l + + return dataset + +############################## write to csv ################################## + +def write_to_csv (dataset, labels, name): + #labels = predict + predict = [x+1 for x in labels] + + classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) + + dest = name + classe.to_csv(dest, sep = '\t', index = False, + header = ['Patient_ID', 'Class']) + +########################### trova il massimo in lista ######################## +def max_index (lista): + best = -1 + best_index = 0 + for i in range(len(lista)): + if lista[i] > best: + best = lista [i] + best_index = i + + return best_index + +################################ kmeans ##################################### + +def kmeans (k_min, k_max, dataset, elbow, silhouette, davies, best_cluster): + if not os.path.exists('clustering'): + os.makedirs('clustering') + + + if elbow == 'true': + elbow = True + else: + elbow = False + + if silhouette == 'true': + silhouette = True + else: + silhouette = False + + if davies == 'true': + davies = True + else: + davies = False + + + range_n_clusters = [i for i in range(k_min, k_max+1)] + distortions = [] + scores = [] + all_labels = [] + + clusterer = KMeans(n_clusters=1, random_state=10) + distortions.append(clusterer.fit(dataset).inertia_) + + + for n_clusters in range_n_clusters: + clusterer = KMeans(n_clusters=n_clusters, random_state=10) + cluster_labels = clusterer.fit_predict(dataset) + + all_labels.append(cluster_labels) + if n_clusters == 1: + silhouette_avg = 0 + else: + silhouette_avg = silhouette_score(dataset, cluster_labels) + scores.append(silhouette_avg) + distortions.append(clusterer.fit(dataset).inertia_) + + best = max_index(scores) + k_min + + for i in range(len(all_labels)): + prefix = '' + if (i + k_min == best): + prefix = '_BEST' + + write_to_csv(dataset, all_labels[i], 'clustering/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') + + + if (prefix == '_BEST'): + labels = all_labels[i] + predict = [x+1 for x in labels] + classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) + classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) + + + if davies: + with np.errstate(divide='ignore', invalid='ignore'): + davies_bouldin = davies_bouldin_score(dataset, all_labels[i]) + warning("\nFor n_clusters = " + str(i + k_min) + + " The average davies bouldin score is: " + str(davies_bouldin)) + + + if silhouette: + silihouette_draw(dataset, all_labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') + + + if elbow: + elbow_plot(distortions, k_min,k_max) + + + + + +############################## elbow_plot #################################### + +def elbow_plot (distortions, k_min, k_max): + plt.figure(0) + x = list(range(k_min, k_max + 1)) + x.insert(0, 1) + plt.plot(x, distortions, marker = 'o') + plt.xlabel('Number of clusters (k)') + plt.ylabel('Distortion') + s = 'clustering/elbow_plot.png' + fig = plt.gcf() + fig.set_size_inches(18.5, 10.5, forward = True) + fig.savefig(s, dpi=100) + + +############################## silhouette plot ############################### +def silihouette_draw(dataset, labels, n_clusters, path): + if n_clusters == 1: + return None + + silhouette_avg = silhouette_score(dataset, labels) + warning("For n_clusters = " + str(n_clusters) + + " The average silhouette_score is: " + str(silhouette_avg)) + + plt.close('all') + # Create a subplot with 1 row and 2 columns + fig, (ax1) = plt.subplots(1, 1) + + fig.set_size_inches(18, 7) + + # The 1st subplot is the silhouette plot + # The silhouette coefficient can range from -1, 1 but in this example all + # lie within [-0.1, 1] + ax1.set_xlim([-1, 1]) + # The (n_clusters+1)*10 is for inserting blank space between silhouette + # plots of individual clusters, to demarcate them clearly. + ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) + + # Compute the silhouette scores for each sample + sample_silhouette_values = silhouette_samples(dataset, labels) + + y_lower = 10 + for i in range(n_clusters): + # Aggregate the silhouette scores for samples belonging to + # cluster i, and sort them + ith_cluster_silhouette_values = \ + sample_silhouette_values[labels == i] + + ith_cluster_silhouette_values.sort() + + size_cluster_i = ith_cluster_silhouette_values.shape[0] + y_upper = y_lower + size_cluster_i + + color = cm.nipy_spectral(float(i) / n_clusters) + ax1.fill_betweenx(np.arange(y_lower, y_upper), + 0, ith_cluster_silhouette_values, + facecolor=color, edgecolor=color, alpha=0.7) + + # Label the silhouette plots with their cluster numbers at the middle + ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) + + # Compute the new y_lower for next plot + y_lower = y_upper + 10 # 10 for the 0 samples + + ax1.set_title("The silhouette plot for the various clusters.") + ax1.set_xlabel("The silhouette coefficient values") + ax1.set_ylabel("Cluster label") + + # The vertical line for average silhouette score of all the values + ax1.axvline(x=silhouette_avg, color="red", linestyle="--") + + ax1.set_yticks([]) # Clear the yaxis labels / ticks + ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) + + + plt.suptitle(("Silhouette analysis for clustering on sample data " + "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') + + + plt.savefig(path, bbox_inches='tight') + +######################## dbscan ############################################## + +def dbscan(dataset, eps, min_samples): + if not os.path.exists('clustering'): + os.makedirs('clustering') + + if eps is not None: + clusterer = DBSCAN(eps = eps, min_samples = min_samples) + else: + clusterer = DBSCAN() + + clustering = clusterer.fit(dataset) + + core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) + core_samples_mask[clustering.core_sample_indices_] = True + labels = clustering.labels_ + + # Number of clusters in labels, ignoring noise if present. + n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) + + + ##TODO: PLOT SU DBSCAN (no centers) e HIERARCHICAL + + + write_to_csv(dataset, labels, 'clustering/dbscan_results.tsv') + +########################## hierachical ####################################### + +def hierachical_agglomerative(dataset, k_min, k_max): + + if not os.path.exists('clustering'): + os.makedirs('clustering') + + plt.figure(figsize=(10, 7)) + plt.title("Customer Dendograms") + shc.dendrogram(shc.linkage(dataset, method='ward')) + fig = plt.gcf() + fig.savefig('clustering/dendogram.png', dpi=200) + + range_n_clusters = [i for i in range(k_min, k_max+1)] + + for n_clusters in range_n_clusters: + + cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') + cluster.fit_predict(dataset) + cluster_labels = cluster.labels_ + + silhouette_avg = silhouette_score(dataset, cluster_labels) + write_to_csv(dataset, cluster_labels, 'clustering/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') + #warning("For n_clusters =", n_clusters, + #"The average silhouette_score is :", silhouette_avg) + + + + + +############################# main ########################################### + + +def main(): + if not os.path.exists('clustering'): + os.makedirs('clustering') + + args = process_args(sys.argv) + + #Data read + + X = read_dataset(args.input) + X = pd.DataFrame.to_dict(X, orient='list') + X = rewrite_input(X) + X = pd.DataFrame.from_dict(X, orient = 'index') + + for i in X.columns: + tmp = X[i][0] + if tmp == None: + X = X.drop(columns=[i]) + + + if args.cluster_type == 'kmeans': + kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.davies, args.best_cluster) + + if args.cluster_type == 'dbscan': + dbscan(X, args.eps, args.min_samples) + + if args.cluster_type == 'hierarchy': + hierachical_agglomerative(X, args.k_min, args.k_max) + +############################################################################## + +if __name__ == "__main__": + main() diff -r 9fcb0e8d6d47 -r e88efefbd015 Desktop/Marea/marea_cluster.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Desktop/Marea/marea_cluster.xml Tue Oct 15 12:21:16 2019 -0400 @@ -0,0 +1,95 @@ + + + + marea_macros.xml + + + pandas + scipy + cobra + scikit-learn + matplotlib + numpy + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff -r 9fcb0e8d6d47 -r e88efefbd015 Desktop/Marea/marea_macros.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Desktop/Marea/marea_macros.xml Tue Oct 15 12:21:16 2019 -0400 @@ -0,0 +1,92 @@ + + + + + + + + + + + + ++--------------------+-------------------------------+ +| id | rule (with entrez-id) | ++====================+===============================+ +| SHMT1 | 155060 or 10357 | ++--------------------+-------------------------------+ +| NIT2 | 155060 or 100134869 | ++--------------------+-------------------------------+ +| GOT1_GOT2_GOT1L1_2 | 155060 and 100134869 or 10357 | ++--------------------+-------------------------------+ + +| + + + + + ++------------+------------+------------+------------+ +| Hugo_ID | TCGAA62670 | TCGAA62671 | TCGAA62672 | ++============+============+============+============+ +| HGNC:24086 | 0.523167 | 0.371355 | 0.925661 | ++------------+------------+------------+------------+ +| HGNC:24086 | 0.568765 | 0.765567 | 0.456789 | ++------------+------------+------------+------------+ +| HGNC:9876 | 0.876545 | 0.768933 | 0.987654 | ++------------+------------+------------+------------+ +| HGNC:9 | 0.456788 | 0.876543 | 0.876542 | ++------------+------------+------------+------------+ +| HGNC:23 | 0.876543 | 0.786543 | 0.897654 | ++------------+------------+------------+------------+ + +| + + + + + ++-------------+------------+------------+------------+ +| Hugo_Symbol | TCGAA62670 | TCGAA62671 | TCGAA62672 | ++=============+============+============+============+ +| A1BG | 0.523167 | 0.371355 | 0.925661 | ++-------------+------------+------------+------------+ +| A1CF | 0.568765 | 0.765567 | 0.456789 | ++-------------+------------+------------+------------+ +| A2M | 0.876545 | 0.768933 | 0.987654 | ++-------------+------------+------------+------------+ +| A4GALT | 0.456788 | 0.876543 | 0.876542 | ++-------------+------------+------------+------------+ +| M664Y65 | 0.876543 | 0.786543 | 0.897654 | ++-------------+------------+------------+------------+ + +| + + + + + +This tool is developed by the `BIMIB`_ at the `Department of Informatics, Systems and Communications`_ of `University of Milan - Bicocca`_. + +.. _BIMIB: http://sito di bio.org +.. _Department of Informatics, Systems and Communications: http://www.disco.unimib.it/go/Home/English +.. _University of Milan - Bicocca: https://www.unimib.it/ + + + + + + +@online{lh32017, + author = {Alex Graudenzi, Davide Maspero, Cluadio Isella, Marzia Di Filippo, Giancarlo Mauri, Enzo Medico, Marco Antoniotti, Chiara Damiani}, + year = {2018}, + title = {MaREA: Metabolic feature extraction, enrichment and visualization of RNAseq}, + publisher = {bioRxiv}, + journal = {bioRxiv}, + url = {https://www.biorxiv.org/content/early/2018/01/16/248724}, +} + + + + +