Mercurial > repos > bimib > marea_2
comparison marea.py @ 175:cb70f4d69b45 draft
Uploaded
author | francesco_lapi |
---|---|
date | Fri, 26 Jul 2024 15:06:23 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
174:15f2ef02247d | 175:cb70f4d69b45 |
---|---|
1 from __future__ import division | |
2 import csv | |
3 from enum import Enum | |
4 import re | |
5 import sys | |
6 import numpy as np | |
7 import pandas as pd | |
8 import itertools as it | |
9 import scipy.stats as st | |
10 import lxml.etree as ET | |
11 import math | |
12 import utils.general_utils as utils | |
13 from PIL import Image | |
14 import os | |
15 import argparse | |
16 import pyvips | |
17 from typing import Tuple, Union, Optional, List, Dict | |
18 | |
19 ERRORS = [] | |
20 ########################## argparse ########################################## | |
21 ARGS :argparse.Namespace | |
22 def process_args() -> argparse.Namespace: | |
23 """ | |
24 Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | |
25 | |
26 Args: | |
27 args : Always obtained (in file) from sys.argv | |
28 | |
29 Returns: | |
30 Namespace : An object containing the parsed arguments | |
31 """ | |
32 parser = argparse.ArgumentParser( | |
33 usage = "%(prog)s [options]", | |
34 description = "process some value's genes to create a comparison's map.") | |
35 | |
36 #General: | |
37 parser.add_argument( | |
38 '-td', '--tool_dir', | |
39 type = str, | |
40 required = True, | |
41 help = 'your tool directory') | |
42 | |
43 parser.add_argument('-on', '--control', type = str) | |
44 parser.add_argument('-ol', '--out_log', help = "Output log") | |
45 | |
46 #Computation details: | |
47 parser.add_argument( | |
48 '-co', '--comparison', | |
49 type = str, | |
50 default = '1vs1', | |
51 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
52 | |
53 parser.add_argument( | |
54 '-pv' ,'--pValue', | |
55 type = float, | |
56 default = 0.1, | |
57 help = 'P-Value threshold (default: %(default)s)') | |
58 | |
59 parser.add_argument( | |
60 '-fc', '--fChange', | |
61 type = float, | |
62 default = 1.5, | |
63 help = 'Fold-Change threshold (default: %(default)s)') | |
64 | |
65 parser.add_argument( | |
66 "-ne", "--net", | |
67 type = utils.Bool("net"), default = False, | |
68 help = "choose if you want net enrichment for RPS") | |
69 | |
70 parser.add_argument( | |
71 '-op', '--option', | |
72 type = str, | |
73 choices = ['datasets', 'dataset_class'], | |
74 help='dataset or dataset and class') | |
75 | |
76 #RAS: | |
77 parser.add_argument( | |
78 "-ra", "--using_RAS", | |
79 type = utils.Bool("using_RAS"), default = True, | |
80 help = "choose whether to use RAS datasets.") | |
81 | |
82 parser.add_argument( | |
83 '-id', '--input_data', | |
84 type = str, | |
85 help = 'input dataset') | |
86 | |
87 parser.add_argument( | |
88 '-ic', '--input_class', | |
89 type = str, | |
90 help = 'sample group specification') | |
91 | |
92 parser.add_argument( | |
93 '-ids', '--input_datas', | |
94 type = str, | |
95 nargs = '+', | |
96 help = 'input datasets') | |
97 | |
98 parser.add_argument( | |
99 '-na', '--names', | |
100 type = str, | |
101 nargs = '+', | |
102 help = 'input names') | |
103 | |
104 #RPS: | |
105 parser.add_argument( | |
106 "-rp", "--using_RPS", | |
107 type = utils.Bool("using_RPS"), default = False, | |
108 help = "choose whether to use RPS datasets.") | |
109 | |
110 parser.add_argument( | |
111 '-idr', '--input_data_rps', | |
112 type = str, | |
113 help = 'input dataset rps') | |
114 | |
115 parser.add_argument( | |
116 '-icr', '--input_class_rps', | |
117 type = str, | |
118 help = 'sample group specification rps') | |
119 | |
120 parser.add_argument( | |
121 '-idsr', '--input_datas_rps', | |
122 type = str, | |
123 nargs = '+', | |
124 help = 'input datasets rps') | |
125 | |
126 parser.add_argument( | |
127 '-nar', '--names_rps', | |
128 type = str, | |
129 nargs = '+', | |
130 help = 'input names rps') | |
131 | |
132 #Output: | |
133 parser.add_argument( | |
134 "-gs", "--generate_svg", | |
135 type = utils.Bool("generate_svg"), default = True, | |
136 help = "choose whether to use RAS datasets.") | |
137 | |
138 parser.add_argument( | |
139 "-gp", "--generate_pdf", | |
140 type = utils.Bool("generate_pdf"), default = True, | |
141 help = "choose whether to use RAS datasets.") | |
142 | |
143 parser.add_argument( | |
144 '-cm', '--custom_map', | |
145 type = str, | |
146 help='custom map to use') | |
147 | |
148 parser.add_argument( | |
149 '-mc', '--choice_map', | |
150 type = utils.Model, default = utils.Model.HMRcore, | |
151 choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | |
152 | |
153 args :argparse.Namespace = parser.parse_args() | |
154 if args.using_RAS and not args.using_RPS: args.net = False | |
155 | |
156 return args | |
157 | |
158 ############################ dataset input #################################### | |
159 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
160 """ | |
161 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | |
162 | |
163 Args: | |
164 data : filepath of a dataset (from frontend input params or literals upon calling) | |
165 name : name associated with the dataset (from frontend input params or literals upon calling) | |
166 | |
167 Returns: | |
168 pd.DataFrame : dataset in a runtime operable shape | |
169 | |
170 Raises: | |
171 sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | |
172 """ | |
173 try: | |
174 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
175 except pd.errors.EmptyDataError: | |
176 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
177 if len(dataset.columns) < 2: | |
178 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
179 return dataset | |
180 | |
181 ############################ dataset name ##################################### | |
182 def name_dataset(name_data :str, count :int) -> str: | |
183 """ | |
184 Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | |
185 | |
186 Args: | |
187 name_data : name associated with the dataset (from frontend input params) | |
188 count : counter from 1 to make these names unique (external) | |
189 | |
190 Returns: | |
191 str : the name made unique | |
192 """ | |
193 if str(name_data) == 'Dataset': | |
194 return str(name_data) + '_' + str(count) | |
195 else: | |
196 return str(name_data) | |
197 | |
198 ############################ map_methods ###################################### | |
199 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | |
200 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | |
201 """ | |
202 Calculates the fold change between two gene expression values. | |
203 | |
204 Args: | |
205 avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | |
206 | |
207 Returns: | |
208 FoldChange : | |
209 0 : when both input values are 0 | |
210 "-INF" : when avg1 is 0 | |
211 "INF" : when avg2 is 0 | |
212 float : for any other combination of values | |
213 """ | |
214 if avg1 == 0 and avg2 == 0: | |
215 return 0 | |
216 elif avg1 == 0: | |
217 return '-INF' | |
218 elif avg2 == 0: | |
219 return 'INF' | |
220 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | |
221 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | |
222 | |
223 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
224 """ | |
225 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
226 | |
227 Args: | |
228 l : current style string of an SVG element | |
229 col : new value for the "stroke" style property | |
230 width : new value for the "stroke-width" style property | |
231 dash : new value for the "stroke-dasharray" style property | |
232 | |
233 Returns: | |
234 str : the fixed style string | |
235 """ | |
236 tmp = l.split(';') | |
237 flag_col = False | |
238 flag_width = False | |
239 flag_dash = False | |
240 for i in range(len(tmp)): | |
241 if tmp[i].startswith('stroke:'): | |
242 tmp[i] = 'stroke:' + col | |
243 flag_col = True | |
244 if tmp[i].startswith('stroke-width:'): | |
245 tmp[i] = 'stroke-width:' + width | |
246 flag_width = True | |
247 if tmp[i].startswith('stroke-dasharray:'): | |
248 tmp[i] = 'stroke-dasharray:' + dash | |
249 flag_dash = True | |
250 if not flag_col: | |
251 tmp.append('stroke:' + col) | |
252 if not flag_width: | |
253 tmp.append('stroke-width:' + width) | |
254 if not flag_dash: | |
255 tmp.append('stroke-dasharray:' + dash) | |
256 return ';'.join(tmp) | |
257 | |
258 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | |
259 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
260 """ | |
261 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
262 | |
263 Args: | |
264 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
265 core_map : SVG map to modify | |
266 threshold_P_V : threshold for a p-value to be considered significant | |
267 threshold_F_C : threshold for a fold change value to be considered significant | |
268 max_z_score : highest z-score (absolute value) | |
269 | |
270 Returns: | |
271 ET.ElementTree : the modified core_map | |
272 | |
273 Side effects: | |
274 core_map : mut | |
275 """ | |
276 maxT = 12 | |
277 minT = 2 | |
278 grey = '#BEBEBE' | |
279 blue = '#6495ed' | |
280 red = '#ecac68' | |
281 for el in core_map.iter(): | |
282 el_id = str(el.get('id')) | |
283 if el_id.startswith('R_'): | |
284 tmp = d.get(el_id[2:]) | |
285 if tmp != None: | |
286 p_val :float = tmp[0] | |
287 f_c = tmp[1] | |
288 z_score = tmp[2] | |
289 if p_val < threshold_P_V: | |
290 if not isinstance(f_c, str): | |
291 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | |
292 col = grey | |
293 width = str(minT) | |
294 else: | |
295 if f_c < 0: | |
296 col = blue | |
297 elif f_c > 0: | |
298 col = red | |
299 width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | |
300 else: | |
301 if f_c == '-INF': | |
302 col = blue | |
303 elif f_c == 'INF': | |
304 col = red | |
305 width = str(maxT) | |
306 dash = 'none' | |
307 else: | |
308 dash = '5,5' | |
309 col = grey | |
310 width = str(minT) | |
311 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
312 return core_map | |
313 | |
314 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | |
315 """ | |
316 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | |
317 not enforced, if more than one element with the exact ID is found only the first will be returned. | |
318 | |
319 Args: | |
320 reactionId (str): exact ID of the requested element. | |
321 metabMap (ET.ElementTree): metabolic map containing the element. | |
322 | |
323 Returns: | |
324 utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | |
325 """ | |
326 return utils.Result.Ok( | |
327 f"//*[@id=\"{reactionId}\"]").map( | |
328 lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | |
329 lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | |
330 # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | |
331 | |
332 def styleMapElement(element :ET.Element, styleStr :str) -> None: | |
333 currentStyles :str = element.get("style", "") | |
334 if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | |
335 currentStyles = ';'.join(currentStyles.split(';')[:-3]) | |
336 | |
337 element.set("style", currentStyles + styleStr) | |
338 | |
339 class ReactionDirection(Enum): | |
340 Unknown = "" | |
341 Direct = "_F" | |
342 Inverse = "_B" | |
343 | |
344 @classmethod | |
345 def fromDir(cls, s :str) -> "ReactionDirection": | |
346 # vvv as long as there's so few variants I actually condone the if spam: | |
347 if s == ReactionDirection.Direct.value: return ReactionDirection.Direct | |
348 if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | |
349 return ReactionDirection.Unknown | |
350 | |
351 @classmethod | |
352 def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | |
353 return ReactionDirection.fromDir(reactionId[-2:]) | |
354 | |
355 def getArrowBodyElementId(reactionId :str) -> str: | |
356 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
357 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | |
358 return f"R_{reactionId}" | |
359 | |
360 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | |
361 """ | |
362 We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | |
363 | |
364 Args: | |
365 reactionId : the provided reaction ID. | |
366 | |
367 Returns: | |
368 Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | |
369 """ | |
370 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
371 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | |
372 return f"F_{reactionId}", f"B_{reactionId}" | |
373 | |
374 class ArrowColor(Enum): | |
375 """ | |
376 Encodes possible arrow colors based on their meaning in the enrichment process. | |
377 """ | |
378 Invalid = "#BEBEBE" # gray, fold-change under treshold | |
379 UpRegulated = "#ecac68" # red, up-regulated reaction | |
380 DownRegulated = "#6495ed" # blue, down-regulated reaction | |
381 | |
382 UpRegulatedInv = "#FF0000" | |
383 # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | |
384 # conflicting enrichment in the two directions. | |
385 | |
386 DownRegulatedInv = "#0000FF" | |
387 # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | |
388 # conflicting enrichment in the two directions. | |
389 | |
390 @classmethod | |
391 def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | |
392 colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | |
393 return colors[useAltColor] | |
394 | |
395 def __str__(self) -> str: return self.value | |
396 | |
397 class Arrow: | |
398 """ | |
399 Models the properties of a reaction arrow that change based on enrichment. | |
400 """ | |
401 MIN_W = 2 | |
402 MAX_W = 12 | |
403 | |
404 def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | |
405 """ | |
406 (Private) Initializes an instance of Arrow. | |
407 | |
408 Args: | |
409 width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | |
410 col : color of the arrow. | |
411 isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | |
412 | |
413 Returns: | |
414 None : practically, a Arrow instance. | |
415 """ | |
416 self.w = width | |
417 self.col = col | |
418 self.dash = isDashed | |
419 | |
420 def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | |
421 if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | |
422 ERRORS.append(reactionId) | |
423 | |
424 def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | |
425 # If We're dealing with RAS data or in general don't care about the direction of the reaction we only style the arrow body | |
426 if not mindReactionDir: | |
427 return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
428 | |
429 # Now we style the arrow head(s): | |
430 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
431 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
432 if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
433 | |
434 def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | |
435 """ | |
436 Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | |
437 | |
438 Args: | |
439 reactionId: the reaction ID, as encoded in the dataset. | |
440 mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | |
441 | |
442 Returns: | |
443 str : the ID of an arrow's body or tips in the map. | |
444 """ | |
445 # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | |
446 if not mindReactionDir: return "R_" + reactionId | |
447 | |
448 #TODO: this is clearly something we need to make consistent in RPS | |
449 return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | |
450 | |
451 def toStyleStr(self, *, downSizedForTips = False) -> str: | |
452 """ | |
453 Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | |
454 | |
455 Returns: | |
456 str : the styles string. | |
457 """ | |
458 width = self.w | |
459 if downSizedForTips: width *= 0.8 | |
460 return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | |
461 | |
462 # vvv These constants could be inside the class itself a static properties, but python | |
463 # was built by brainless organisms so here we are! | |
464 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | |
465 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | |
466 | |
467 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | |
468 """ | |
469 Applies RPS enrichment results to the provided metabolic map. | |
470 | |
471 Args: | |
472 rpsEnrichmentRes : RPS enrichment results. | |
473 metabMap : the metabolic map to edit. | |
474 maxNumericZScore : biggest finite z-score value found. | |
475 | |
476 Side effects: | |
477 metabMap : mut | |
478 | |
479 Returns: | |
480 None | |
481 """ | |
482 for reactionId, values in rpsEnrichmentRes.items(): | |
483 pValue = values[0] | |
484 foldChange = values[1] | |
485 z_score = values[2] | |
486 | |
487 if isinstance(foldChange, str): foldChange = float(foldChange) | |
488 if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | |
489 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | |
490 continue | |
491 | |
492 if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | |
493 INVALID_ARROW.styleReactionElements(metabMap, reactionId) | |
494 continue | |
495 | |
496 width = Arrow.MAX_W | |
497 if not math.isinf(foldChange): | |
498 try: width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | |
499 except ZeroDivisionError: pass | |
500 | |
501 if not reactionId.endswith("_RV"): # RV stands for reversible reactions | |
502 Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | |
503 continue | |
504 | |
505 reactionId = reactionId[:-3] # Remove "_RV" | |
506 | |
507 inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | |
508 if inversionScore == 2: foldChange *= -1 | |
509 # ^^^ Style the inverse direction with the opposite sign netValue | |
510 | |
511 # If the score is 1 (opposite signs) we use alternative colors vvv | |
512 arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | |
513 | |
514 # vvv These 2 if statements can both be true and can both happen | |
515 if ARGS.net: # style arrow head(s): | |
516 arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | |
517 | |
518 if not ARGS.using_RAS: # style arrow body | |
519 arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
520 | |
521 ############################ split class ###################################### | |
522 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | |
523 """ | |
524 Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | |
525 | |
526 Args: | |
527 classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | |
528 resolve_rules : a :dict containing :float data | |
529 | |
530 Returns: | |
531 dict : the dict with data grouped by class | |
532 | |
533 Side effects: | |
534 classes : mut | |
535 """ | |
536 class_pat :Dict[str, List[List[float]]] = {} | |
537 for i in range(len(classes)): | |
538 classe :str = classes.iloc[i, 1] | |
539 if pd.isnull(classe): continue | |
540 | |
541 l :List[List[float]] = [] | |
542 for j in range(i, len(classes)): | |
543 if classes.iloc[j, 1] == classe: | |
544 pat_id :str = classes.iloc[j, 0] | |
545 tmp = resolve_rules.get(pat_id, None) | |
546 if tmp != None: | |
547 l.append(tmp) | |
548 classes.iloc[j, 1] = None | |
549 | |
550 if l: | |
551 class_pat[classe] = list(map(list, zip(*l))) | |
552 continue | |
553 | |
554 utils.logWarning( | |
555 f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | |
556 | |
557 return class_pat | |
558 | |
559 ############################ conversion ############################################## | |
560 #conversion from svg to png | |
561 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | |
562 """ | |
563 Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | |
564 | |
565 Args: | |
566 svg_path : path to SVG file | |
567 png_path : path for new PNG file | |
568 dpi : dots per inch of the generated PNG | |
569 scale : scaling factor for the generated PNG, computed internally when a size is provided | |
570 size : final effective width of the generated PNG | |
571 | |
572 Returns: | |
573 None | |
574 """ | |
575 if size: | |
576 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | |
577 scale = size / image.width | |
578 image = image.resize(scale) | |
579 else: | |
580 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | |
581 | |
582 white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | |
583 white_background = white_background.affine([scale, 0, 0, scale]) | |
584 | |
585 if white_background.bands != image.bands: | |
586 white_background = white_background.extract_band(0) | |
587 | |
588 composite_image = white_background.composite2(image, 'over') | |
589 composite_image.write_to_file(png_path.show()) | |
590 | |
591 #funzione unica, lascio fuori i file e li passo in input | |
592 #conversion from png to pdf | |
593 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | |
594 """ | |
595 Internal utility to convert a PNG to PDF to aid from SVG conversion. | |
596 | |
597 Args: | |
598 png_file : path to PNG file | |
599 pdf_file : path to new PDF file | |
600 | |
601 Returns: | |
602 None | |
603 """ | |
604 image = Image.open(png_file.show()) | |
605 image = image.convert("RGB") | |
606 image.save(pdf_file.show(), "PDF", resolution=100.0) | |
607 | |
608 #function called to reduce redundancy in the code | |
609 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | |
610 """ | |
611 Converts the SVG map at the provided path to PDF. | |
612 | |
613 Args: | |
614 file_svg : path to SVG file | |
615 file_png : path to PNG file | |
616 file_pdf : path to new PDF file | |
617 | |
618 Returns: | |
619 None | |
620 """ | |
621 svg_to_png_with_background(file_svg, file_png) | |
622 try: | |
623 convert_png_to_pdf(file_png, file_pdf) | |
624 print(f'PDF file {file_pdf.filePath} successfully generated.') | |
625 | |
626 except Exception as e: | |
627 raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | |
628 | |
629 ############################ map ############################################## | |
630 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | |
631 """ | |
632 Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | |
633 "result/" folder, used by this tool for output files in collections. | |
634 | |
635 Args: | |
636 dataset1Name : _description_ | |
637 dataset2Name : _description_. Defaults to "rest". | |
638 details : _description_ | |
639 ext : _description_ | |
640 | |
641 Returns: | |
642 utils.FilePath : _description_ | |
643 """ | |
644 # This function returns a util data structure but is extremely specific to this module. | |
645 # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | |
646 # TODO: until a third tool with multiple outputs appears before porting this to utils. | |
647 return utils.FilePath( | |
648 f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | |
649 # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | |
650 # all output files: I don't care, this was never the performance bottleneck of the tool and | |
651 # there is no other net gain in saving and re-using the built string. | |
652 ext, | |
653 prefix = "result") | |
654 | |
655 FIELD_NOT_AVAILABLE = '/' | |
656 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | |
657 fieldsAmt = len(fieldNames) | |
658 with open(outPath.show(), "w", newline = "") as fd: | |
659 writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | |
660 writer.writeheader() | |
661 | |
662 for row in rows: | |
663 sizeMismatch = fieldsAmt - len(row) | |
664 if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | |
665 writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | |
666 | |
667 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | |
668 def writeTabularResult(enrichedScores : OldEnrichedScores, ras_enrichment: bool, outPath :utils.FilePath) -> None: | |
669 fieldNames = ["ids", "P_Value", "fold change"] | |
670 if not ras_enrichment: fieldNames.extend(["average_1", "average_2"]) | |
671 | |
672 writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | |
673 | |
674 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: | |
675 # this function compiles the things always in common between comparison modes after enrichment. | |
676 # TODO: organize, name better. | |
677 writeTabularResult(tmp, ras_enrichment, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | |
678 | |
679 if ras_enrichment: | |
680 fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) | |
681 return | |
682 | |
683 for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | |
684 applyRpsEnrichmentToMap(tmp, core_map, max_z_score) | |
685 | |
686 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | |
687 """ | |
688 Computes the statistical significance score (P-value) of the comparison between coherent data | |
689 from two datasets. The data is supposed to, in both datasets: | |
690 - be related to the same reaction ID; | |
691 - be ordered by sample, such that the item at position i in both lists is related to the | |
692 same sample or cell line. | |
693 | |
694 Args: | |
695 dataset1Data : data from the 1st dataset. | |
696 dataset2Data : data from the 2nd dataset. | |
697 | |
698 Returns: | |
699 tuple: (P-value, Z-score) | |
700 - P-value from a Kolmogorov-Smirnov test on the provided data. | |
701 - Z-score of the difference between means of the two datasets. | |
702 """ | |
703 # Perform Kolmogorov-Smirnov test | |
704 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
705 | |
706 # Calculate means and standard deviations | |
707 mean1 = np.mean(dataset1Data) | |
708 mean2 = np.mean(dataset2Data) | |
709 std1 = np.std(dataset1Data, ddof=1) | |
710 std2 = np.std(dataset2Data, ddof=1) | |
711 | |
712 n1 = len(dataset1Data) | |
713 n2 = len(dataset2Data) | |
714 | |
715 # Calculate Z-score | |
716 z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | |
717 | |
718 return p_value, z_score | |
719 | |
720 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | |
721 #TODO: the following code still suffers from "dumbvarnames-osis" | |
722 tmp :Dict[str, List[Union[float, FoldChange]]] = {} | |
723 count = 0 | |
724 max_z_score = 0 | |
725 | |
726 for l1, l2 in zip(dataset1Data, dataset2Data): | |
727 reactId = ids[count] | |
728 count += 1 | |
729 if not reactId: continue # we skip ids that have already been processed | |
730 | |
731 try: #TODO: identify the source of these errors and minimize code in the try block | |
732 reactDir = ReactionDirection.fromReactionId(reactId) | |
733 # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used | |
734 if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: | |
735 print("sono entrato nell'if e non ho superato il try") | |
736 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) | |
737 except ValueError: continue # we look for the complementary id, if not found we skip | |
738 print("sono entrato nell'if e ho superato il try") | |
739 nets1 = np.subtract(l1, dataset1Data[position]) | |
740 nets2 = np.subtract(l2, dataset2Data[position]) | |
741 | |
742 p_value, z_score = computePValue(nets1, nets2) | |
743 avg1 = sum(nets1) / len(nets1) | |
744 avg2 = sum(nets2) / len(nets2) | |
745 net = fold_change(avg1, avg2) | |
746 | |
747 if math.isnan(net): continue | |
748 tmp[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] | |
749 | |
750 # vvv complementary directional ids are set to None once processed if net is to be applied to tips | |
751 if ARGS.net: | |
752 ids[position] = None | |
753 continue | |
754 | |
755 # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used | |
756 p_value, z_score = computePValue(l1, l2) | |
757 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
758 if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | |
759 tmp[reactId] = [float(p_value), avg, z_score] | |
760 | |
761 except (TypeError, ZeroDivisionError): continue | |
762 | |
763 return tmp, max_z_score | |
764 | |
765 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str], *, fromRAS = True) -> None: | |
766 """ | |
767 Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | |
768 provided metabolic map. | |
769 | |
770 Args: | |
771 metabMap : SVG map to modify. | |
772 class_pat : the clustered data. | |
773 ids : ids for data association. | |
774 fromRAS : whether the data to enrich consists of RAS scores. | |
775 | |
776 Returns: | |
777 None | |
778 | |
779 Raises: | |
780 sys.exit : if there are less than 2 classes for comparison | |
781 | |
782 Side effects: | |
783 metabMap : mut | |
784 ids : mut | |
785 """ | |
786 class_pat = { k.strip() : v for k, v in class_pat.items() } | |
787 #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | |
788 if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | |
789 | |
790 if ARGS.comparison == "manyvsmany": | |
791 for i, j in it.combinations(class_pat.keys(), 2): | |
792 #TODO: these 2 functions are always called in pair and in this order and need common data, | |
793 # some clever refactoring would be appreciated. | |
794 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | |
795 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j, fromRAS) | |
796 | |
797 elif ARGS.comparison == "onevsrest": | |
798 for single_cluster in class_pat.keys(): | |
799 t :List[List[List[float]]] = [] | |
800 for k in class_pat.keys(): | |
801 if k != single_cluster: | |
802 t.append(class_pat.get(k)) | |
803 | |
804 rest :List[List[float]] = [] | |
805 for i in t: | |
806 rest = rest + i | |
807 | |
808 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | |
809 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster, fromRAS) | |
810 | |
811 elif ARGS.comparison == "onevsmany": | |
812 controlItems = class_pat.get(ARGS.control) | |
813 for otherDataset in class_pat.keys(): | |
814 if otherDataset == ARGS.control: continue | |
815 | |
816 comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | |
817 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset, fromRAS) | |
818 | |
819 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | |
820 svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG) | |
821 utils.writeSvg(svgFilePath, core_map) | |
822 | |
823 if ARGS.generate_pdf: | |
824 pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG) | |
825 pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF) | |
826 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
827 | |
828 if not ARGS.generate_svg: os.remove(svgFilePath.show()) | |
829 | |
830 ClassPat = Dict[str, List[List[float]]] | |
831 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | |
832 # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | |
833 # for the sake of everyone's sanity. | |
834 class_pat :ClassPat = {} | |
835 if ARGS.option == 'datasets': | |
836 num = 1 #TODO: the dataset naming function could be a generator | |
837 for path, name in zip(datasetsPaths, names): | |
838 name = name_dataset(name, num) | |
839 resolve_rules_float, ids = getDatasetValues(path, name) | |
840 if resolve_rules_float != None: | |
841 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | |
842 | |
843 num += 1 | |
844 | |
845 elif ARGS.option == "dataset_class": | |
846 classes = read_dataset(classPath, "class") | |
847 classes = classes.astype(str) | |
848 | |
849 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | |
850 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | |
851 | |
852 return ids, class_pat | |
853 #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | |
854 | |
855 #TODO: create these damn args as FilePath objects | |
856 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | |
857 """ | |
858 Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | |
859 | |
860 Args: | |
861 datasetPath : path to the dataset | |
862 datasetName (str): dataset name, used in error reporting | |
863 | |
864 Returns: | |
865 Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | |
866 """ | |
867 dataset = read_dataset(datasetPath, datasetName) | |
868 IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | |
869 | |
870 dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | |
871 return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | |
872 | |
873 ############################ MAIN ############################################# | |
874 def main() -> None: | |
875 """ | |
876 Initializes everything and sets the program in motion based on the fronted input arguments. | |
877 | |
878 Returns: | |
879 None | |
880 | |
881 Raises: | |
882 sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | |
883 """ | |
884 | |
885 global ARGS | |
886 ARGS = process_args() | |
887 | |
888 if os.path.isdir('result') == False: os.makedirs('result') | |
889 | |
890 core_map :ET.ElementTree = ARGS.choice_map.getMap( | |
891 ARGS.tool_dir, | |
892 utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | |
893 # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | |
894 # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | |
895 # solution can be derived from my comment in FilePath.fromStrPath | |
896 | |
897 if ARGS.using_RAS: | |
898 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) | |
899 computeEnrichment(core_map, class_pat, ids) | |
900 | |
901 if ARGS.using_RPS: | |
902 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) | |
903 computeEnrichment(core_map, class_pat, ids, fromRAS = False) | |
904 | |
905 # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this | |
906 if ARGS.comparison == "manyvsmany": | |
907 for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map) | |
908 return | |
909 | |
910 if ARGS.comparison == "onevsrest": | |
911 for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map) | |
912 return | |
913 | |
914 for otherDataset in class_pat.keys(): | |
915 if otherDataset != ARGS.control: createOutputMaps(i, j, core_map) | |
916 | |
917 if not ERRORS: return | |
918 utils.logWarning( | |
919 f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | |
920 ARGS.out_log) | |
921 | |
922 print('Execution succeded') | |
923 | |
924 ############################################################################### | |
925 if __name__ == "__main__": | |
926 main() |