# HG changeset patch # User luca_milaz # Date 1721641067 0 # Node ID 01bcab2f69a0b7e5e226dc43a7606b368167cb50 # Parent 8996762c35cbb462f44d695095ce40c0dd36f026 Uploaded diff -r 8996762c35cb -r 01bcab2f69a0 marea_2/ras_to_bounds.py --- a/marea_2/ras_to_bounds.py Mon Jul 22 09:05:28 2024 +0000 +++ b/marea_2/ras_to_bounds.py Mon Jul 22 09:37:47 2024 +0000 @@ -100,7 +100,7 @@ sys.exit('Execution aborted: wrong format of ' + name + '\n') return dataset -def generate_bounds(model:cobra.Model, medium:dict, ras=None) -> pd.DataFrame: +'''def generate_bounds(model:cobra.Model, medium:dict, ras=None) -> pd.DataFrame: rxns_ids = [] for rxn in model.reactions: rxns_ids.append(rxn.id) @@ -152,6 +152,44 @@ bounds.to_csv(ARGS.output_folder + "bounds.csv", sep = '\t', index = False) + pass''' + +def generate_bounds(model: cobra.Model, medium: dict, ras=None) -> pd.DataFrame: + rxns_ids = [rxn.id for rxn in model.reactions] + + # Set medium conditions + for reaction, value in medium.items(): + if value is not None: + model.reactions.get_by_id(reaction).lower_bound = -float(value) + + # Perform Flux Variability Analysis (FVA) + df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) + + # Set FVA bounds + for reaction in rxns_ids: + rxn = model.reactions.get_by_id(reaction) + rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) + rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) + + def apply_ras_bounds(model, ras_row, rxns_ids): + for reaction in rxns_ids: + if reaction in ras_row.index and pd.notna(ras_row[reaction]): + rxn = model.reactions.get_by_id(reaction) + scaling_factor = ras_row[reaction] + rxn.lower_bound *= scaling_factor + rxn.upper_bound *= scaling_factor + + if ras is not None: + for cellName, ras_row in ras.iterrows(): + model_new = model.copy() + apply_ras_bounds(model_new, ras_row, rxns_ids) + bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) + bounds.to_csv(ARGS.output_folder + cellName + ".csv", sep='\t', index=False) + else: + model_new = model.copy() + apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) + bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) + bounds.to_csv(ARGS.output_folder + "bounds.csv", sep='\t', index=False) pass